#!/usr/bin/env python3 import io import logging import multiprocessing import os import random import time import imghdr from pathlib import Path from typing import Union import cv2 import torch import numpy as np from loguru import logger from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config try: torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) except: pass from flask import Flask, request, send_file, cli, make_response # Disable ability for Flask to display warning about using a development server in a production environment. # https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356 cli.show_server_banner = lambda *_: None from flask_cors import CORS from lama_cleaner.helper import ( load_img, numpy_to_bytes, resize_max_size, ) NUM_THREADS = str(multiprocessing.cpu_count()) # fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 os.environ["KMP_DUPLICATE_LIB_OK"] = "True" os.environ["OMP_NUM_THREADS"] = NUM_THREADS os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS os.environ["MKL_NUM_THREADS"] = NUM_THREADS os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS if os.environ.get("CACHE_DIR"): os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build") class NoFlaskwebgui(logging.Filter): def filter(self, record): return "GET //flaskwebgui-keep-server-alive" not in record.getMessage() logging.getLogger("werkzeug").addFilter(NoFlaskwebgui()) app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static")) app.config["JSON_AS_ASCII"] = False CORS(app, expose_headers=["Content-Disposition"]) # MAX_BUFFER_SIZE = 50 * 1000 * 1000 # 50 MB # async_mode 优先级: eventlet/gevent_uwsgi/gevent/threading # only threading works on macOS # socketio = SocketIO(app, max_http_buffer_size=MAX_BUFFER_SIZE, async_mode='threading') model: ModelManager = None device = None input_image_path: str = None def get_image_ext(img_bytes): w = imghdr.what("", img_bytes) if w is None: w = "jpeg" return w def diffuser_callback(step: int): pass # socketio.emit('diffusion_step', {'diffusion_step': step}) @app.route("/inpaint", methods=["POST"]) def process(): input = request.files # RGB origin_image_bytes = input["image"].read() image, alpha_channel = load_img(origin_image_bytes) original_shape = image.shape interpolation = cv2.INTER_CUBIC form = request.form size_limit: Union[int, str] = form.get("sizeLimit", "1080") if size_limit == "Original": size_limit = max(image.shape) else: size_limit = int(size_limit) config = Config( ldm_steps=form["ldmSteps"], ldm_sampler=form["ldmSampler"], hd_strategy=form["hdStrategy"], zits_wireframe=form["zitsWireframe"], hd_strategy_crop_margin=form["hdStrategyCropMargin"], hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"], hd_strategy_resize_limit=form["hdStrategyResizeLimit"], prompt=form["prompt"], use_croper=form["useCroper"], croper_x=form["croperX"], croper_y=form["croperY"], croper_height=form["croperHeight"], croper_width=form["croperWidth"], sd_strength=form["sdStrength"], sd_steps=form["sdSteps"], sd_guidance_scale=form["sdGuidanceScale"], sd_sampler=form["sdSampler"], sd_seed=form["sdSeed"], ) if config.sd_seed == -1: config.sd_seed = random.randint(1, 9999999) logger.info(f"Origin image shape: {original_shape}") image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) logger.info(f"Resized image shape: {image.shape}") mask, _ = load_img(input["mask"].read(), gray=True) mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) start = time.time() res_np_img = model(image, mask, config) logger.info(f"process time: {(time.time() - start) * 1000}ms") torch.cuda.empty_cache() if alpha_channel is not None: if alpha_channel.shape[:2] != res_np_img.shape[:2]: alpha_channel = cv2.resize( alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0]) ) res_np_img = np.concatenate( (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1 ) ext = get_image_ext(origin_image_bytes) response = make_response( send_file( io.BytesIO(numpy_to_bytes(res_np_img, ext)), mimetype=f"image/{ext}", ) ) response.headers["X-Seed"] = str(config.sd_seed) return response @app.route("/model") def current_model(): return model.name, 200 @app.route("/model_downloaded/") def model_downloaded(name): return str(model.is_downloaded(name)), 200 @app.route("/model", methods=["POST"]) def switch_model(): new_name = request.form.get("name") if new_name == model.name: return "Same model", 200 try: model.switch(new_name) except NotImplementedError: return f"{new_name} not implemented", 403 return f"ok, switch to {new_name}", 200 @app.route("/") def index(): return send_file(os.path.join(BUILD_DIR, "index.html")) @app.route("/inputimage") def set_input_photo(): if input_image_path: with open(input_image_path, "rb") as f: image_in_bytes = f.read() return send_file( input_image_path, as_attachment=True, attachment_filename=Path(input_image_path).name, mimetype=f"image/{get_image_ext(image_in_bytes)}", ) else: return "No Input Image" def main(args): global model global device global input_image_path device = torch.device(args.device) input_image_path = args.input model = ModelManager( name=args.model, device=device, hf_access_token=args.hf_access_token, callbacks=[diffuser_callback], ) if args.gui: app_width, app_height = args.gui_size from flaskwebgui import FlaskUI ui = FlaskUI( app, width=app_width, height=app_height, host=args.host, port=args.port ) ui.run() else: # TODO: socketio app.run(host=args.host, port=args.port, debug=args.debug)