import random import PIL import PIL.Image import cv2 import numpy as np import torch from diffusers import DiffusionPipeline from lama_cleaner.model.base import InpaintModel from lama_cleaner.schema import Config class PaintByExample(InpaintModel): pad_mod = 8 min_size = 512 def init_model(self, device: torch.device, **kwargs): use_gpu = device == torch.device('cuda') and torch.cuda.is_available() torch_dtype = torch.float16 if use_gpu else torch.float32 self.model = DiffusionPipeline.from_pretrained( "Fantasy-Studio/Paint-by-Example", torch_dtype=torch_dtype, ) self.model.enable_attention_slicing() self.model = self.model.to(device) def forward(self, image, mask, config: Config): """Input image and output image have same size image: [H, W, C] RGB mask: [H, W, 1] 255 means area to repaint return: BGR IMAGE """ seed = config.paint_by_example_seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) output = self.model( image=PIL.Image.fromarray(image), mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), example_image=config.paint_by_example_example_image, num_inference_steps=config.paint_by_example_steps, output_type='np.array', ).images[0] output = (output * 255).round().astype("uint8") output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output @torch.no_grad() def __call__(self, image, mask, config: Config): """ images: [H, W, C] RGB, not normalized masks: [H, W] return: BGR IMAGE """ if config.use_croper: crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config) crop_image = self._pad_forward(crop_img, crop_mask, config) inpaint_result = image[:, :, ::-1] inpaint_result[t:b, l:r, :] = crop_image else: inpaint_result = self._pad_forward(image, mask, config) return inpaint_result def forward_post_process(self, result, image, mask, config): if config.paint_by_example_match_histograms: result = self._match_histograms(result, image[:, :, ::-1], mask) if config.paint_by_example_mask_blur != 0: k = 2 * config.paint_by_example_mask_blur + 1 mask = cv2.GaussianBlur(mask, (k, k), 0) return result, image, mask @staticmethod def is_downloaded() -> bool: # model will be downloaded when app start, and can't switch in frontend settings return True