import PIL.Image import cv2 import torch from loguru import logger import numpy as np from ..base import DiffusionInpaintModel from ..helper.cpu_text_encoder import CPUTextEncoderWrapper from ..original_sd_configs import get_config_files from ..utils import ( handle_from_pretrained_exceptions, get_torch_dtype, enable_low_mem, is_local_files_only, ) from .brushnet import BrushNetModel from .brushnet_unet_forward import brushnet_unet_forward from .unet_2d_blocks import CrossAttnDownBlock2D_forward, DownBlock2D_forward, CrossAttnUpBlock2D_forward, \ UpBlock2D_forward from ...schema import InpaintRequest, ModelType class BrushNetWrapper(DiffusionInpaintModel): pad_mod = 8 min_size = 512 def init_model(self, device: torch.device, **kwargs): from .pipeline_brushnet import StableDiffusionBrushNetPipeline self.model_info = kwargs["model_info"] self.brushnet_method = kwargs["brushnet_method"] use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) self.torch_dtype = torch_dtype model_kwargs = { **kwargs.get("pipe_components", {}), "local_files_only": is_local_files_only(**kwargs), } self.local_files_only = model_kwargs["local_files_only"] disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get( "cpu_offload", False ) if disable_nsfw_checker: logger.info("Disable Stable Diffusion Model NSFW checker") model_kwargs.update( dict( safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) ) logger.info(f"Loading BrushNet model from {self.brushnet_method}") brushnet = BrushNetModel.from_pretrained(self.brushnet_method, torch_dtype=torch_dtype) if self.model_info.is_single_file_diffusers: if self.model_info.model_type == ModelType.DIFFUSERS_SD: model_kwargs["num_in_channels"] = 4 else: model_kwargs["num_in_channels"] = 9 self.model = StableDiffusionBrushNetPipeline.from_single_file( self.model_id_or_path, torch_dtype=torch_dtype, load_safety_checker=not disable_nsfw_checker, original_config_file=get_config_files()['v1'], brushnet=brushnet, **model_kwargs, ) else: self.model = handle_from_pretrained_exceptions( StableDiffusionBrushNetPipeline.from_pretrained, pretrained_model_name_or_path=self.model_id_or_path, variant="fp16", torch_dtype=torch_dtype, brushnet=brushnet, **model_kwargs, ) enable_low_mem(self.model, kwargs.get("low_mem", False)) if kwargs.get("cpu_offload", False) and use_gpu: logger.info("Enable sequential cpu offload") self.model.enable_sequential_cpu_offload(gpu_id=0) else: self.model = self.model.to(device) if kwargs["sd_cpu_textencoder"]: logger.info("Run Stable Diffusion TextEncoder on CPU") self.model.text_encoder = CPUTextEncoderWrapper( self.model.text_encoder, torch_dtype ) self.callback = kwargs.pop("callback", None) # Monkey patch the forward method of the UNet to use the brushnet_unet_forward method self.model.unet.forward = brushnet_unet_forward.__get__(self.model.unet, self.model.unet.__class__) for down_block in self.model.brushnet.down_blocks: down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__) for up_block in self.model.brushnet.up_blocks: up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__) # Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward for down_block in self.model.unet.down_blocks: if down_block.__class__.__name__ == "CrossAttnDownBlock2D": down_block.forward = CrossAttnDownBlock2D_forward.__get__(down_block, down_block.__class__) else: down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__) for up_block in self.model.unet.up_blocks: if up_block.__class__.__name__ == "CrossAttnUpBlock2D": up_block.forward = CrossAttnUpBlock2D_forward.__get__(up_block, up_block.__class__) else: up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__) def switch_brushnet_method(self, new_method: str): self.brushnet_method = new_method brushnet = BrushNetModel.from_pretrained( new_method, resume_download=True, local_files_only=self.local_files_only, torch_dtype=self.torch_dtype, ).to(self.model.device) self.model.brushnet = brushnet def forward(self, image, mask, config: InpaintRequest): """Input image and output image have same size image: [H, W, C] RGB mask: [H, W, 1] 255 means area to repaint return: BGR IMAGE """ self.set_scheduler(config) img_h, img_w = image.shape[:2] normalized_mask = mask[:, :].astype("float32") / 255.0 image = image * (1 - normalized_mask) image = image.astype(np.uint8) output = self.model( image=PIL.Image.fromarray(image), prompt=config.prompt, negative_prompt=config.negative_prompt, mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"), num_inference_steps=config.sd_steps, # strength=config.sd_strength, guidance_scale=config.sd_guidance_scale, output_type="np", callback_on_step_end=self.callback, height=img_h, width=img_w, generator=torch.manual_seed(config.sd_seed), brushnet_conditioning_scale=config.brushnet_conditioning_scale, ).images[0] output = (output * 255).round().astype("uint8") output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output