from typing import Type, List, Union import torch from torch import nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm @torch.no_grad() def default_init_weights( module_list: Union[List[nn.Module], nn.Module], scale: float = 1, bias_fill: float = 0, **kwargs, ) -> None: """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) def make_layer( basic_block: Type[nn.Module], num_basic_block: int, **kwarg ) -> nn.Sequential: """Make layers by stacking the same blocks. Args: basic_block (Type[nn.Module]): nn.Module class for basic block. num_basic_block (int): number of blocks. Returns: nn.Sequential: Stacked blocks in nn.Sequential. """ layers = [] for _ in range(num_basic_block): layers.append(basic_block(**kwarg)) return nn.Sequential(*layers) # TODO: may write a cpp file def pixel_unshuffle(x: torch.Tensor, scale: int) -> torch.Tensor: """Pixel unshuffle. Args: x (Tensor): Input feature with shape (b, c, hh, hw). scale (int): Downsample ratio. Returns: Tensor: the pixel unshuffled feature. """ b, c, hh, hw = x.size() out_channel = c * (scale**2) assert hh % scale == 0 and hw % scale == 0 h = hh // scale w = hw // scale x_view = x.view(b, c, h, scale, w, scale) return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)