70af4845af
new file: inpaint/__main__.py new file: inpaint/api.py new file: inpaint/batch_processing.py new file: inpaint/benchmark.py new file: inpaint/cli.py new file: inpaint/const.py new file: inpaint/download.py new file: inpaint/file_manager/__init__.py new file: inpaint/file_manager/file_manager.py new file: inpaint/file_manager/storage_backends.py new file: inpaint/file_manager/utils.py new file: inpaint/helper.py new file: inpaint/installer.py new file: inpaint/model/__init__.py new file: inpaint/model/anytext/__init__.py new file: inpaint/model/anytext/anytext_model.py new file: inpaint/model/anytext/anytext_pipeline.py new file: inpaint/model/anytext/anytext_sd15.yaml new file: inpaint/model/anytext/cldm/__init__.py new file: inpaint/model/anytext/cldm/cldm.py new file: inpaint/model/anytext/cldm/ddim_hacked.py new file: inpaint/model/anytext/cldm/embedding_manager.py new file: inpaint/model/anytext/cldm/hack.py new file: inpaint/model/anytext/cldm/model.py new file: inpaint/model/anytext/cldm/recognizer.py new file: inpaint/model/anytext/ldm/__init__.py new file: inpaint/model/anytext/ldm/models/__init__.py new file: inpaint/model/anytext/ldm/models/autoencoder.py new file: inpaint/model/anytext/ldm/models/diffusion/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/ddim.py new file: inpaint/model/anytext/ldm/models/diffusion/ddpm.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file: inpaint/model/anytext/ldm/models/diffusion/plms.py new file: inpaint/model/anytext/ldm/models/diffusion/sampling_util.py new file: inpaint/model/anytext/ldm/modules/__init__.py new file: inpaint/model/anytext/ldm/modules/attention.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/model.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/util.py new file: inpaint/model/anytext/ldm/modules/distributions/__init__.py new file: inpaint/model/anytext/ldm/modules/distributions/distributions.py new file: inpaint/model/anytext/ldm/modules/ema.py new file: inpaint/model/anytext/ldm/modules/encoders/__init__.py new file: inpaint/model/anytext/ldm/modules/encoders/modules.py new file: inpaint/model/anytext/ldm/util.py new file: inpaint/model/anytext/main.py new file: inpaint/model/anytext/ocr_recog/RNN.py new file: inpaint/model/anytext/ocr_recog/RecCTCHead.py new file: inpaint/model/anytext/ocr_recog/RecModel.py new file: inpaint/model/anytext/ocr_recog/RecMv1_enhance.py new file: inpaint/model/anytext/ocr_recog/RecSVTR.py new file: inpaint/model/anytext/ocr_recog/__init__.py new file: inpaint/model/anytext/ocr_recog/common.py new file: inpaint/model/anytext/ocr_recog/en_dict.txt new file: inpaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file: inpaint/model/anytext/utils.py new file: inpaint/model/base.py new file: inpaint/model/brushnet/__init__.py new file: inpaint/model/brushnet/brushnet.py new file: inpaint/model/brushnet/brushnet_unet_forward.py new file: inpaint/model/brushnet/brushnet_wrapper.py new file: inpaint/model/brushnet/pipeline_brushnet.py new file: inpaint/model/brushnet/unet_2d_blocks.py new file: inpaint/model/controlnet.py new file: inpaint/model/ddim_sampler.py new file: inpaint/model/fcf.py new file: inpaint/model/helper/__init__.py new file: inpaint/model/helper/controlnet_preprocess.py new file: inpaint/model/helper/cpu_text_encoder.py new file: inpaint/model/helper/g_diffuser_bot.py new file: inpaint/model/instruct_pix2pix.py new file: inpaint/model/kandinsky.py new file: inpaint/model/lama.py new file: inpaint/model/ldm.py new file: inpaint/model/manga.py new file: inpaint/model/mat.py new file: inpaint/model/mi_gan.py new file: inpaint/model/opencv2.py new file: inpaint/model/original_sd_configs/__init__.py new file: inpaint/model/original_sd_configs/sd_xl_base.yaml new file: inpaint/model/original_sd_configs/sd_xl_refiner.yaml new file: inpaint/model/original_sd_configs/v1-inference.yaml new file: inpaint/model/original_sd_configs/v2-inference-v.yaml new file: inpaint/model/paint_by_example.py new file: inpaint/model/plms_sampler.py new file: inpaint/model/power_paint/__init__.py new file: inpaint/model/power_paint/pipeline_powerpaint.py new file: inpaint/model/power_paint/power_paint.py new file: inpaint/model/power_paint/power_paint_v2.py new file: inpaint/model/power_paint/powerpaint_tokenizer.py
113 lines
4.0 KiB
Python
113 lines
4.0 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
|
|
|
from copy import deepcopy
|
|
from typing import Tuple
|
|
|
|
|
|
class ResizeLongestSide:
|
|
"""
|
|
Resizes images to longest side 'target_length', as well as provides
|
|
methods for resizing coordinates and boxes. Provides methods for
|
|
transforming both numpy array and batched torch tensors.
|
|
"""
|
|
|
|
def __init__(self, target_length: int) -> None:
|
|
self.target_length = target_length
|
|
|
|
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Expects a numpy array with shape HxWxC in uint8 format.
|
|
"""
|
|
target_size = self.get_preprocess_shape(
|
|
image.shape[0], image.shape[1], self.target_length
|
|
)
|
|
return np.array(resize(to_pil_image(image), target_size))
|
|
|
|
def apply_coords(
|
|
self, coords: np.ndarray, original_size: Tuple[int, ...]
|
|
) -> np.ndarray:
|
|
"""
|
|
Expects a numpy array of length 2 in the final dimension. Requires the
|
|
original image size in (H, W) format.
|
|
"""
|
|
old_h, old_w = original_size
|
|
new_h, new_w = self.get_preprocess_shape(
|
|
original_size[0], original_size[1], self.target_length
|
|
)
|
|
coords = deepcopy(coords).astype(float)
|
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
|
return coords
|
|
|
|
def apply_boxes(
|
|
self, boxes: np.ndarray, original_size: Tuple[int, ...]
|
|
) -> np.ndarray:
|
|
"""
|
|
Expects a numpy array shape Bx4. Requires the original image size
|
|
in (H, W) format.
|
|
"""
|
|
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
|
return boxes.reshape(-1, 4)
|
|
|
|
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Expects batched images with shape BxCxHxW and float format. This
|
|
transformation may not exactly match apply_image. apply_image is
|
|
the transformation expected by the model.
|
|
"""
|
|
# Expects an image in BCHW format. May not exactly match apply_image.
|
|
target_size = self.get_preprocess_shape(
|
|
image.shape[0], image.shape[1], self.target_length
|
|
)
|
|
return F.interpolate(
|
|
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
|
)
|
|
|
|
def apply_coords_torch(
|
|
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Expects a torch tensor with length 2 in the last dimension. Requires the
|
|
original image size in (H, W) format.
|
|
"""
|
|
old_h, old_w = original_size
|
|
new_h, new_w = self.get_preprocess_shape(
|
|
original_size[0], original_size[1], self.target_length
|
|
)
|
|
coords = deepcopy(coords).to(torch.float)
|
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
|
return coords
|
|
|
|
def apply_boxes_torch(
|
|
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Expects a torch tensor with shape Bx4. Requires the original image
|
|
size in (H, W) format.
|
|
"""
|
|
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
|
return boxes.reshape(-1, 4)
|
|
|
|
@staticmethod
|
|
def get_preprocess_shape(
|
|
oldh: int, oldw: int, long_side_length: int
|
|
) -> Tuple[int, int]:
|
|
"""
|
|
Compute the output size given input size and target long side length.
|
|
"""
|
|
scale = long_side_length * 1.0 / max(oldh, oldw)
|
|
newh, neww = oldh * scale, oldw * scale
|
|
neww = int(neww + 0.5)
|
|
newh = int(newh + 0.5)
|
|
return (newh, neww)
|