313 lines
11 KiB
Python
313 lines
11 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.model.base import InpaintModel
|
|
from lama_cleaner.model.ddim_sampler import DDIMSampler
|
|
from lama_cleaner.model.plms_sampler import PLMSSampler
|
|
from lama_cleaner.schema import Config, LDMSampler
|
|
|
|
torch.manual_seed(42)
|
|
import torch.nn as nn
|
|
from lama_cleaner.helper import (
|
|
download_model,
|
|
norm_img,
|
|
get_cache_path_by_url,
|
|
load_jit_model,
|
|
)
|
|
from lama_cleaner.model.utils import (
|
|
make_beta_schedule,
|
|
timestep_embedding,
|
|
)
|
|
|
|
LDM_ENCODE_MODEL_URL = os.environ.get(
|
|
"LDM_ENCODE_MODEL_URL",
|
|
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
|
|
)
|
|
|
|
LDM_DECODE_MODEL_URL = os.environ.get(
|
|
"LDM_DECODE_MODEL_URL",
|
|
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
|
|
)
|
|
|
|
LDM_DIFFUSION_MODEL_URL = os.environ.get(
|
|
"LDM_DIFFUSION_MODEL_URL",
|
|
"https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
|
|
)
|
|
|
|
|
|
class DDPM(nn.Module):
|
|
# classic DDPM with Gaussian diffusion, in image space
|
|
def __init__(
|
|
self,
|
|
device,
|
|
timesteps=1000,
|
|
beta_schedule="linear",
|
|
linear_start=0.0015,
|
|
linear_end=0.0205,
|
|
cosine_s=0.008,
|
|
original_elbo_weight=0.0,
|
|
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
|
l_simple_weight=1.0,
|
|
parameterization="eps", # all assuming fixed variance schedules
|
|
use_positional_encodings=False,
|
|
):
|
|
super().__init__()
|
|
self.device = device
|
|
self.parameterization = parameterization
|
|
self.use_positional_encodings = use_positional_encodings
|
|
|
|
self.v_posterior = v_posterior
|
|
self.original_elbo_weight = original_elbo_weight
|
|
self.l_simple_weight = l_simple_weight
|
|
|
|
self.register_schedule(
|
|
beta_schedule=beta_schedule,
|
|
timesteps=timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
|
|
def register_schedule(
|
|
self,
|
|
given_betas=None,
|
|
beta_schedule="linear",
|
|
timesteps=1000,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
):
|
|
betas = make_beta_schedule(
|
|
self.device,
|
|
beta_schedule,
|
|
timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
alphas = 1.0 - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
|
|
|
(timesteps,) = betas.shape
|
|
self.num_timesteps = int(timesteps)
|
|
self.linear_start = linear_start
|
|
self.linear_end = linear_end
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)
|
|
|
|
self.register_buffer("betas", to_torch(betas))
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
|
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
|
self.register_buffer(
|
|
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
|
)
|
|
|
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
|
posterior_variance = (1 - self.v_posterior) * betas * (
|
|
1.0 - alphas_cumprod_prev
|
|
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
|
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
|
self.register_buffer(
|
|
"posterior_log_variance_clipped",
|
|
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
|
)
|
|
self.register_buffer(
|
|
"posterior_mean_coef1",
|
|
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
|
)
|
|
self.register_buffer(
|
|
"posterior_mean_coef2",
|
|
to_torch(
|
|
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
|
),
|
|
)
|
|
|
|
if self.parameterization == "eps":
|
|
lvlb_weights = self.betas**2 / (
|
|
2
|
|
* self.posterior_variance
|
|
* to_torch(alphas)
|
|
* (1 - self.alphas_cumprod)
|
|
)
|
|
elif self.parameterization == "x0":
|
|
lvlb_weights = (
|
|
0.5
|
|
* np.sqrt(torch.Tensor(alphas_cumprod))
|
|
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
|
)
|
|
else:
|
|
raise NotImplementedError("mu not supported")
|
|
# TODO how to choose this term
|
|
lvlb_weights[0] = lvlb_weights[1]
|
|
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
|
assert not torch.isnan(self.lvlb_weights).all()
|
|
|
|
|
|
class LatentDiffusion(DDPM):
|
|
def __init__(
|
|
self,
|
|
diffusion_model,
|
|
device,
|
|
cond_stage_key="image",
|
|
cond_stage_trainable=False,
|
|
concat_mode=True,
|
|
scale_factor=1.0,
|
|
scale_by_std=False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.num_timesteps_cond = 1
|
|
self.scale_by_std = scale_by_std
|
|
super().__init__(device, *args, **kwargs)
|
|
self.diffusion_model = diffusion_model
|
|
self.concat_mode = concat_mode
|
|
self.cond_stage_trainable = cond_stage_trainable
|
|
self.cond_stage_key = cond_stage_key
|
|
self.num_downs = 2
|
|
self.scale_factor = scale_factor
|
|
|
|
def make_cond_schedule(
|
|
self,
|
|
):
|
|
self.cond_ids = torch.full(
|
|
size=(self.num_timesteps,),
|
|
fill_value=self.num_timesteps - 1,
|
|
dtype=torch.long,
|
|
)
|
|
ids = torch.round(
|
|
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
|
).long()
|
|
self.cond_ids[: self.num_timesteps_cond] = ids
|
|
|
|
def register_schedule(
|
|
self,
|
|
given_betas=None,
|
|
beta_schedule="linear",
|
|
timesteps=1000,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
):
|
|
super().register_schedule(
|
|
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
|
)
|
|
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
|
if self.shorten_cond_schedule:
|
|
self.make_cond_schedule()
|
|
|
|
def apply_model(self, x_noisy, t, cond):
|
|
# x_recon = self.model(x_noisy, t, cond['c_concat'][0]) # cond['c_concat'][0].shape 1,4,128,128
|
|
t_emb = timestep_embedding(x_noisy.device, t, 256, repeat_only=False)
|
|
x_recon = self.diffusion_model(x_noisy, t_emb, cond)
|
|
return x_recon
|
|
|
|
|
|
class LDM(InpaintModel):
|
|
pad_mod = 32
|
|
|
|
def __init__(self, device, fp16: bool = True, **kwargs):
|
|
self.fp16 = fp16
|
|
super().__init__(device)
|
|
self.device = device
|
|
|
|
def init_model(self, device, **kwargs):
|
|
self.diffusion_model = load_jit_model(LDM_DIFFUSION_MODEL_URL, device)
|
|
self.cond_stage_model_decode = load_jit_model(LDM_DECODE_MODEL_URL, device)
|
|
self.cond_stage_model_encode = load_jit_model(LDM_ENCODE_MODEL_URL, device)
|
|
if self.fp16 and "cuda" in str(device):
|
|
self.diffusion_model = self.diffusion_model.half()
|
|
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
|
|
self.cond_stage_model_encode = self.cond_stage_model_encode.half()
|
|
|
|
self.model = LatentDiffusion(self.diffusion_model, device)
|
|
|
|
@staticmethod
|
|
def is_downloaded() -> bool:
|
|
model_paths = [
|
|
get_cache_path_by_url(LDM_DIFFUSION_MODEL_URL),
|
|
get_cache_path_by_url(LDM_DECODE_MODEL_URL),
|
|
get_cache_path_by_url(LDM_ENCODE_MODEL_URL),
|
|
]
|
|
return all([os.path.exists(it) for it in model_paths])
|
|
|
|
@torch.cuda.amp.autocast()
|
|
def forward(self, image, mask, config: Config):
|
|
"""
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1]
|
|
return: BGR IMAGE
|
|
"""
|
|
# image [1,3,512,512] float32
|
|
# mask: [1,1,512,512] float32
|
|
# masked_image: [1,3,512,512] float32
|
|
if config.ldm_sampler == LDMSampler.ddim:
|
|
sampler = DDIMSampler(self.model)
|
|
elif config.ldm_sampler == LDMSampler.plms:
|
|
sampler = PLMSSampler(self.model)
|
|
else:
|
|
raise ValueError()
|
|
|
|
steps = config.ldm_steps
|
|
image = norm_img(image)
|
|
mask = norm_img(mask)
|
|
|
|
mask[mask < 0.5] = 0
|
|
mask[mask >= 0.5] = 1
|
|
|
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
|
masked_image = (1 - mask) * image
|
|
|
|
mask = self._norm(mask)
|
|
masked_image = self._norm(masked_image)
|
|
|
|
c = self.cond_stage_model_encode(masked_image)
|
|
torch.cuda.empty_cache()
|
|
|
|
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # 1,1,128,128
|
|
c = torch.cat((c, cc), dim=1) # 1,4,128,128
|
|
|
|
shape = (c.shape[1] - 1,) + c.shape[2:]
|
|
samples_ddim = sampler.sample(
|
|
steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
|
|
)
|
|
torch.cuda.empty_cache()
|
|
x_samples_ddim = self.cond_stage_model_decode(
|
|
samples_ddim
|
|
) # samples_ddim: 1, 3, 128, 128 float32
|
|
torch.cuda.empty_cache()
|
|
|
|
# image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
|
# mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
|
|
inpainted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
# inpainted = (1 - mask) * image + mask * predicted_image
|
|
inpainted_image = inpainted_image.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
|
|
inpainted_image = inpainted_image.astype(np.uint8)[:, :, ::-1]
|
|
return inpainted_image
|
|
|
|
def _norm(self, tensor):
|
|
return tensor * 2.0 - 1.0
|