84 lines
3.1 KiB
Python
84 lines
3.1 KiB
Python
import PIL.Image
|
|
import cv2
|
|
import torch
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel
|
|
from lama_cleaner.model.utils import set_seed
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
class InstructPix2Pix(DiffusionInpaintModel):
|
|
name = "instruct_pix2pix"
|
|
pad_mod = 8
|
|
min_size = 512
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
from diffusers import StableDiffusionInstructPix2PixPipeline
|
|
fp16 = not kwargs.get('no_half', False)
|
|
|
|
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)}
|
|
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False):
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(dict(
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False
|
|
))
|
|
|
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
|
"timbrooks/instruct-pix2pix",
|
|
revision="fp16" if use_gpu and fp16 else "main",
|
|
torch_dtype=torch_dtype,
|
|
**model_kwargs
|
|
)
|
|
|
|
self.model.enable_attention_slicing()
|
|
if kwargs.get('enable_xformers', False):
|
|
self.model.enable_xformers_memory_efficient_attention()
|
|
|
|
if kwargs.get('cpu_offload', False) and use_gpu:
|
|
logger.info("Enable sequential cpu offload")
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
|
|
"""
|
|
output = self.model(
|
|
image=PIL.Image.fromarray(image),
|
|
prompt=config.prompt,
|
|
negative_prompt=config.negative_prompt,
|
|
num_inference_steps=config.p2p_steps,
|
|
image_guidance_scale=config.p2p_image_guidance_scale,
|
|
guidance_scale=config.p2p_guidance_scale,
|
|
output_type="np.array",
|
|
generator=torch.manual_seed(config.sd_seed)
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|
|
|
|
#
|
|
# def forward_post_process(self, result, image, mask, config):
|
|
# if config.sd_match_histograms:
|
|
# result = self._match_histograms(result, image[:, :, ::-1], mask)
|
|
#
|
|
# if config.sd_mask_blur != 0:
|
|
# k = 2 * config.sd_mask_blur + 1
|
|
# mask = cv2.GaussianBlur(mask, (k, k), 0)
|
|
# return result, image, mask
|
|
|
|
@staticmethod
|
|
def is_downloaded() -> bool:
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
return True
|