IOPaint/lama_cleaner/tests/test_model.py
2022-04-16 21:29:18 +08:00

56 lines
1.8 KiB
Python

import os
from pathlib import Path
import cv2
import numpy as np
import pytest
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy
current_dir = Path(__file__).parent.absolute().resolve()
def get_data():
img = cv2.imread(str(current_dir / 'image.png'))
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
mask = cv2.imread(str(current_dir / 'mask.png'), cv2.IMREAD_GRAYSCALE)
return img, mask
def get_config(strategy):
return Config(
ldm_steps=1,
hd_strategy=strategy,
hd_strategy_crop_margin=32,
hd_strategy_crop_trigger_size=200,
hd_strategy_resize_limit=200,
)
def assert_equal(model, config, gt_name):
img, mask = get_data()
res = model(img, mask, config)
# cv2.imwrite(gt_name, res,
# [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0])
"""
Note that JPEG is lossy compression, so even if it is the highest quality 100,
when the saved image is reloaded, a difference occurs with the original pixel value.
If you want to save the original image as it is, save it as PNG or BMP.
"""
gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
assert np.array_equal(res, gt)
@pytest.mark.parametrize('strategy', [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
def test_lama(strategy):
model = ModelManager(name='lama', device='cpu')
assert_equal(model, get_config(strategy), f'lama_{strategy[0].upper() + strategy[1:]}_result.png')
@pytest.mark.parametrize('strategy', [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
def test_ldm(strategy):
model = ModelManager(name='ldm', device='cpu')
assert_equal(model, get_config(strategy), f'ldm_{strategy[0].upper() + strategy[1:]}_result.png')