182 lines
5.5 KiB
Python
182 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import math
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .sam2_utils import DropPath, get_clones, LayerNorm2d
|
|
|
|
|
|
class MaskDownSampler(nn.Module):
|
|
"""
|
|
Progressively downsample a mask by total_stride, each time by stride.
|
|
Note that LayerNorm is applied per *token*, like in ViT.
|
|
|
|
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
|
In the end, we linearly project to embed_dim channels.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim=256,
|
|
kernel_size=4,
|
|
stride=4,
|
|
padding=0,
|
|
total_stride=16,
|
|
activation=nn.GELU,
|
|
):
|
|
super().__init__()
|
|
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
|
assert stride**num_layers == total_stride
|
|
self.encoder = nn.Sequential()
|
|
mask_in_chans, mask_out_chans = 1, 1
|
|
for _ in range(num_layers):
|
|
mask_out_chans = mask_in_chans * (stride**2)
|
|
self.encoder.append(
|
|
nn.Conv2d(
|
|
mask_in_chans,
|
|
mask_out_chans,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
)
|
|
)
|
|
self.encoder.append(LayerNorm2d(mask_out_chans))
|
|
self.encoder.append(activation())
|
|
mask_in_chans = mask_out_chans
|
|
|
|
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
|
|
|
def forward(self, x):
|
|
return self.encoder(x)
|
|
|
|
|
|
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
|
class CXBlock(nn.Module):
|
|
r"""ConvNeXt Block. There are two equivalent implementations:
|
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
|
We use (2) as we find it slightly faster in PyTorch
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
kernel_size=7,
|
|
padding=3,
|
|
drop_path=0.0,
|
|
layer_scale_init_value=1e-6,
|
|
use_dwconv=True,
|
|
):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv2d(
|
|
dim,
|
|
dim,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
groups=dim if use_dwconv else 1,
|
|
) # depthwise conv
|
|
self.norm = LayerNorm2d(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(
|
|
dim, 4 * dim
|
|
) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(4 * dim, dim)
|
|
self.gamma = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
input = x
|
|
x = self.dwconv(x)
|
|
x = self.norm(x)
|
|
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.pwconv2(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
|
|
|
x = input + self.drop_path(x)
|
|
return x
|
|
|
|
|
|
class Fuser(nn.Module):
|
|
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
|
super().__init__()
|
|
self.proj = nn.Identity()
|
|
self.layers = get_clones(layer, num_layers)
|
|
|
|
if input_projection:
|
|
assert dim is not None
|
|
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
|
|
|
def forward(self, x):
|
|
# normally x: (N, C, H, W)
|
|
x = self.proj(x)
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class MemoryEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
out_dim,
|
|
mask_downsampler,
|
|
fuser,
|
|
position_encoding,
|
|
in_dim=256, # in_dim of pix_feats
|
|
):
|
|
super().__init__()
|
|
|
|
self.mask_downsampler = mask_downsampler
|
|
|
|
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
|
self.fuser = fuser
|
|
self.position_encoding = position_encoding
|
|
self.out_proj = nn.Identity()
|
|
if out_dim != in_dim:
|
|
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
|
|
|
def forward(
|
|
self,
|
|
pix_feat: torch.Tensor,
|
|
masks: torch.Tensor,
|
|
skip_mask_sigmoid: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
## Process masks
|
|
# sigmoid, so that less domain shift from gt masks which are bool
|
|
if not skip_mask_sigmoid:
|
|
masks = F.sigmoid(masks)
|
|
masks = self.mask_downsampler(masks)
|
|
|
|
## Fuse pix_feats and downsampled masks
|
|
# in case the visual features are on CPU, cast them to CUDA
|
|
pix_feat = pix_feat.to(masks.device)
|
|
|
|
x = self.pix_feat_proj(pix_feat)
|
|
x = x + masks
|
|
x = self.fuser(x)
|
|
x = self.out_proj(x)
|
|
|
|
pos = self.position_encoding(x).to(x.dtype)
|
|
|
|
return {"vision_features": x, "vision_pos_enc": [pos]}
|