150 lines
5.6 KiB
Python
150 lines
5.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import copy
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
|
"""
|
|
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
|
|
that are temporally closest to the current frame at `frame_idx`. Here, we take
|
|
- a) the closest conditioning frame before `frame_idx` (if any);
|
|
- b) the closest conditioning frame after `frame_idx` (if any);
|
|
- c) any other temporally closest conditioning frames until reaching a total
|
|
of `max_cond_frame_num` conditioning frames.
|
|
|
|
Outputs:
|
|
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
|
|
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
|
|
"""
|
|
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
|
selected_outputs = cond_frame_outputs
|
|
unselected_outputs = {}
|
|
else:
|
|
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
|
selected_outputs = {}
|
|
|
|
# the closest conditioning frame before `frame_idx` (if any)
|
|
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
|
if idx_before is not None:
|
|
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
|
|
|
# the closest conditioning frame after `frame_idx` (if any)
|
|
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
|
if idx_after is not None:
|
|
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
|
|
|
# add other temporally closest conditioning frames until reaching a total
|
|
# of `max_cond_frame_num` conditioning frames.
|
|
num_remain = max_cond_frame_num - len(selected_outputs)
|
|
inds_remain = sorted(
|
|
(t for t in cond_frame_outputs if t not in selected_outputs),
|
|
key=lambda x: abs(x - frame_idx),
|
|
)[:num_remain]
|
|
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
|
unselected_outputs = {
|
|
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
|
|
}
|
|
|
|
return selected_outputs, unselected_outputs
|
|
|
|
|
|
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
|
"""
|
|
Get 1D sine positional embedding as in the original Transformer paper.
|
|
"""
|
|
pe_dim = dim // 2
|
|
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
|
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
|
|
|
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
|
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
|
return pos_embed
|
|
|
|
|
|
def get_activation_fn(activation):
|
|
"""Return an activation function given a string"""
|
|
if activation == "relu":
|
|
return F.relu
|
|
if activation == "gelu":
|
|
return F.gelu
|
|
if activation == "glu":
|
|
return F.glu
|
|
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
|
|
|
|
|
def get_clones(module, N):
|
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
|
|
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
self.scale_by_keep = scale_by_keep
|
|
|
|
def forward(self, x):
|
|
if self.drop_prob == 0.0 or not self.training:
|
|
return x
|
|
keep_prob = 1 - self.drop_prob
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
if keep_prob > 0.0 and self.scale_by_keep:
|
|
random_tensor.div_(keep_prob)
|
|
return x * random_tensor
|
|
|
|
|
|
# Lightly adapted from
|
|
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
|
class MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int,
|
|
hidden_dim: int,
|
|
output_dim: int,
|
|
num_layers: int,
|
|
activation: nn.Module = nn.ReLU,
|
|
sigmoid_output: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
h = [hidden_dim] * (num_layers - 1)
|
|
self.layers = nn.ModuleList(
|
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
|
)
|
|
self.sigmoid_output = sigmoid_output
|
|
self.act = activation()
|
|
|
|
def forward(self, x):
|
|
for i, layer in enumerate(self.layers):
|
|
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
if self.sigmoid_output:
|
|
x = F.sigmoid(x)
|
|
return x
|
|
|
|
|
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
|
class LayerNorm2d(nn.Module):
|
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
self.eps = eps
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
return x
|