631 lines
19 KiB
Python
631 lines
19 KiB
Python
#!/usr/bin/env python3
|
|
import os
|
|
import hashlib
|
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
|
|
import imghdr
|
|
import io
|
|
import logging
|
|
import multiprocessing
|
|
import random
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.const import (
|
|
SD15_MODELS,
|
|
FREEU_DEFAULT_CONFIGS,
|
|
MODELS_SUPPORT_FREEU,
|
|
MODELS_SUPPORT_LCM_LORA,
|
|
)
|
|
from lama_cleaner.file_manager import FileManager
|
|
from lama_cleaner.model.utils import torch_gc
|
|
from lama_cleaner.model_manager import ModelManager
|
|
from lama_cleaner.plugins import (
|
|
InteractiveSeg,
|
|
RemoveBG,
|
|
RealESRGANUpscaler,
|
|
MakeGIF,
|
|
GFPGANPlugin,
|
|
RestoreFormerPlugin,
|
|
AnimeSeg,
|
|
)
|
|
from lama_cleaner.schema import Config
|
|
|
|
try:
|
|
torch._C._jit_override_can_fuse_on_cpu(False)
|
|
torch._C._jit_override_can_fuse_on_gpu(False)
|
|
torch._C._jit_set_texpr_fuser_enabled(False)
|
|
torch._C._jit_set_nvfuser_enabled(False)
|
|
except:
|
|
pass
|
|
|
|
from flask import (
|
|
Flask,
|
|
request,
|
|
send_file,
|
|
cli,
|
|
make_response,
|
|
send_from_directory,
|
|
jsonify,
|
|
)
|
|
from flask_socketio import SocketIO
|
|
|
|
# Disable ability for Flask to display warning about using a development server in a production environment.
|
|
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
|
|
cli.show_server_banner = lambda *_: None
|
|
from flask_cors import CORS
|
|
|
|
from lama_cleaner.helper import (
|
|
load_img,
|
|
numpy_to_bytes,
|
|
resize_max_size,
|
|
pil_to_bytes,
|
|
)
|
|
|
|
NUM_THREADS = str(multiprocessing.cpu_count())
|
|
|
|
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
|
|
|
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
|
|
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
|
|
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
|
|
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
|
|
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
|
|
if os.environ.get("CACHE_DIR"):
|
|
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
|
|
|
|
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
|
|
|
|
|
|
class NoFlaskwebgui(logging.Filter):
|
|
def filter(self, record):
|
|
msg = record.getMessage()
|
|
if "Running on http:" in msg:
|
|
print(msg[msg.index("Running on http:") :])
|
|
|
|
return (
|
|
"flaskwebgui-keep-server-alive" not in msg
|
|
and "socket.io" not in msg
|
|
and "This is a development server." not in msg
|
|
)
|
|
|
|
|
|
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
|
|
|
|
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
|
|
app.config["JSON_AS_ASCII"] = False
|
|
CORS(app, expose_headers=["Content-Disposition"])
|
|
|
|
sio_logger = logging.getLogger("sio-logger")
|
|
sio_logger.setLevel(logging.ERROR)
|
|
socketio = SocketIO(app, cors_allowed_origins="*", async_mode="threading")
|
|
|
|
model: ModelManager = None
|
|
thumb: FileManager = None
|
|
output_dir: str = None
|
|
device = None
|
|
input_image_path: str = None
|
|
is_disable_model_switch: bool = False
|
|
is_controlnet: bool = False
|
|
controlnet_method: str = "control_v11p_sd15_canny"
|
|
is_enable_file_manager: bool = False
|
|
is_enable_auto_saving: bool = False
|
|
is_desktop: bool = False
|
|
image_quality: int = 95
|
|
plugins = {}
|
|
|
|
|
|
def get_image_ext(img_bytes):
|
|
w = imghdr.what("", img_bytes)
|
|
if w is None:
|
|
w = "jpeg"
|
|
return w
|
|
|
|
|
|
def diffuser_callback(i, t, latents):
|
|
socketio.emit("diffusion_progress", {"step": i})
|
|
|
|
|
|
@app.route("/save_image", methods=["POST"])
|
|
def save_image():
|
|
if output_dir is None:
|
|
return "--output-dir is None", 500
|
|
|
|
input = request.files
|
|
filename = request.form["filename"]
|
|
origin_image_bytes = input["image"].read() # RGB
|
|
ext = get_image_ext(origin_image_bytes)
|
|
image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True)
|
|
save_path = os.path.join(output_dir, filename)
|
|
|
|
if alpha_channel is not None:
|
|
if alpha_channel.shape[:2] != image.shape[:2]:
|
|
alpha_channel = cv2.resize(
|
|
alpha_channel, dsize=(image.shape[1], image.shape[0])
|
|
)
|
|
image = np.concatenate((image, alpha_channel[:, :, np.newaxis]), axis=-1)
|
|
|
|
pil_image = Image.fromarray(image)
|
|
|
|
img_bytes = pil_to_bytes(
|
|
pil_image,
|
|
ext,
|
|
quality=image_quality,
|
|
exif_infos=exif_infos,
|
|
)
|
|
with open(save_path, "wb") as fw:
|
|
fw.write(img_bytes)
|
|
|
|
return "ok", 200
|
|
|
|
|
|
@app.route("/medias/<tab>")
|
|
def medias(tab):
|
|
if tab == "image":
|
|
response = make_response(jsonify(thumb.media_names), 200)
|
|
else:
|
|
response = make_response(jsonify(thumb.output_media_names), 200)
|
|
# response.last_modified = thumb.modified_time[tab]
|
|
# response.cache_control.no_cache = True
|
|
# response.cache_control.max_age = 0
|
|
# response.make_conditional(request)
|
|
return response
|
|
|
|
|
|
@app.route("/media/<tab>/<filename>")
|
|
def media_file(tab, filename):
|
|
if tab == "image":
|
|
return send_from_directory(thumb.root_directory, filename)
|
|
return send_from_directory(thumb.output_dir, filename)
|
|
|
|
|
|
@app.route("/media_thumbnail/<tab>/<filename>")
|
|
def media_thumbnail_file(tab, filename):
|
|
args = request.args
|
|
width = args.get("width")
|
|
height = args.get("height")
|
|
if width is None and height is None:
|
|
width = 256
|
|
if width:
|
|
width = int(float(width))
|
|
if height:
|
|
height = int(float(height))
|
|
|
|
directory = thumb.root_directory
|
|
if tab == "output":
|
|
directory = thumb.output_dir
|
|
thumb_filename, (width, height) = thumb.get_thumbnail(
|
|
directory, filename, width, height
|
|
)
|
|
thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}"
|
|
|
|
response = make_response(send_file(thumb_filepath))
|
|
response.headers["X-Width"] = str(width)
|
|
response.headers["X-Height"] = str(height)
|
|
return response
|
|
|
|
|
|
@app.route("/inpaint", methods=["POST"])
|
|
def process():
|
|
input = request.files
|
|
# RGB
|
|
origin_image_bytes = input["image"].read()
|
|
image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True)
|
|
|
|
mask, _ = load_img(input["mask"].read(), gray=True)
|
|
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
if image.shape[:2] != mask.shape[:2]:
|
|
return (
|
|
f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}",
|
|
400,
|
|
)
|
|
|
|
original_shape = image.shape
|
|
interpolation = cv2.INTER_CUBIC
|
|
|
|
form = request.form
|
|
size_limit = max(image.shape)
|
|
|
|
if "paintByExampleImage" in input:
|
|
paint_by_example_example_image, _ = load_img(
|
|
input["paintByExampleImage"].read()
|
|
)
|
|
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
|
|
else:
|
|
paint_by_example_example_image = None
|
|
|
|
config = Config(
|
|
ldm_steps=form["ldmSteps"],
|
|
ldm_sampler=form["ldmSampler"],
|
|
hd_strategy=form["hdStrategy"],
|
|
zits_wireframe=form["zitsWireframe"],
|
|
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
|
|
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
|
|
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
|
|
prompt=form["prompt"],
|
|
negative_prompt=form["negativePrompt"],
|
|
use_croper=form["useCroper"],
|
|
croper_x=form["croperX"],
|
|
croper_y=form["croperY"],
|
|
croper_height=form["croperHeight"],
|
|
croper_width=form["croperWidth"],
|
|
sd_scale=form["sdScale"],
|
|
sd_mask_blur=form["sdMaskBlur"],
|
|
sd_strength=form["sdStrength"],
|
|
sd_steps=form["sdSteps"],
|
|
sd_guidance_scale=form["sdGuidanceScale"],
|
|
sd_sampler=form["sdSampler"],
|
|
sd_seed=form["sdSeed"],
|
|
sd_match_histograms=form["sdMatchHistograms"],
|
|
cv2_flag=form["cv2Flag"],
|
|
cv2_radius=form["cv2Radius"],
|
|
paint_by_example_steps=form["paintByExampleSteps"],
|
|
paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"],
|
|
paint_by_example_mask_blur=form["paintByExampleMaskBlur"],
|
|
paint_by_example_seed=form["paintByExampleSeed"],
|
|
paint_by_example_match_histograms=form["paintByExampleMatchHistograms"],
|
|
paint_by_example_example_image=paint_by_example_example_image,
|
|
p2p_steps=form["p2pSteps"],
|
|
p2p_image_guidance_scale=form["p2pImageGuidanceScale"],
|
|
p2p_guidance_scale=form["p2pGuidanceScale"],
|
|
controlnet_conditioning_scale=form["controlnet_conditioning_scale"],
|
|
controlnet_method=form["controlnet_method"],
|
|
)
|
|
|
|
if config.sd_seed == -1:
|
|
config.sd_seed = random.randint(1, 999999999)
|
|
if config.paint_by_example_seed == -1:
|
|
config.paint_by_example_seed = random.randint(1, 999999999)
|
|
|
|
logger.info(f"Origin image shape: {original_shape}")
|
|
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
start = time.time()
|
|
try:
|
|
res_np_img = model(image, mask, config)
|
|
except RuntimeError as e:
|
|
if "CUDA out of memory. " in str(e):
|
|
# NOTE: the string may change?
|
|
return "CUDA out of memory", 500
|
|
else:
|
|
logger.exception(e)
|
|
return f"{str(e)}", 500
|
|
finally:
|
|
logger.info(f"process time: {(time.time() - start) * 1000}ms")
|
|
torch_gc()
|
|
|
|
res_np_img = cv2.cvtColor(res_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
|
if alpha_channel is not None:
|
|
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
|
|
alpha_channel = cv2.resize(
|
|
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
|
)
|
|
res_np_img = np.concatenate(
|
|
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
|
)
|
|
|
|
ext = get_image_ext(origin_image_bytes)
|
|
|
|
bytes_io = io.BytesIO(
|
|
pil_to_bytes(
|
|
Image.fromarray(res_np_img),
|
|
ext,
|
|
quality=image_quality,
|
|
exif_infos=exif_infos,
|
|
)
|
|
)
|
|
|
|
response = make_response(
|
|
send_file(
|
|
# io.BytesIO(numpy_to_bytes(res_np_img, ext)),
|
|
bytes_io,
|
|
mimetype=f"image/{ext}",
|
|
)
|
|
)
|
|
response.headers["X-Seed"] = str(config.sd_seed)
|
|
|
|
socketio.emit("diffusion_finish")
|
|
return response
|
|
|
|
|
|
@app.route("/run_plugin", methods=["POST"])
|
|
def run_plugin():
|
|
form = request.form
|
|
files = request.files
|
|
name = form["name"]
|
|
if name not in plugins:
|
|
return "Plugin not found", 500
|
|
|
|
origin_image_bytes = files["image"].read() # RGB
|
|
rgb_np_img, alpha_channel, exif_infos = load_img(
|
|
origin_image_bytes, return_exif=True
|
|
)
|
|
|
|
start = time.time()
|
|
try:
|
|
form = dict(form)
|
|
if name == InteractiveSeg.name:
|
|
img_md5 = hashlib.md5(origin_image_bytes).hexdigest()
|
|
form["img_md5"] = img_md5
|
|
bgr_res = plugins[name](rgb_np_img, files, form)
|
|
except RuntimeError as e:
|
|
torch.cuda.empty_cache()
|
|
if "CUDA out of memory. " in str(e):
|
|
# NOTE: the string may change?
|
|
return "CUDA out of memory", 500
|
|
else:
|
|
logger.exception(e)
|
|
return "Internal Server Error", 500
|
|
|
|
logger.info(f"{name} process time: {(time.time() - start) * 1000}ms")
|
|
torch_gc()
|
|
|
|
if name == MakeGIF.name:
|
|
return send_file(
|
|
io.BytesIO(bgr_res),
|
|
mimetype="image/gif",
|
|
as_attachment=True,
|
|
download_name=form["filename"],
|
|
)
|
|
if name == InteractiveSeg.name:
|
|
return make_response(
|
|
send_file(
|
|
io.BytesIO(numpy_to_bytes(bgr_res, "png")),
|
|
mimetype="image/png",
|
|
)
|
|
)
|
|
|
|
if name in [RemoveBG.name, AnimeSeg.name]:
|
|
rgb_res = bgr_res
|
|
ext = "png"
|
|
else:
|
|
rgb_res = cv2.cvtColor(bgr_res, cv2.COLOR_BGR2RGB)
|
|
ext = get_image_ext(origin_image_bytes)
|
|
if alpha_channel is not None:
|
|
if alpha_channel.shape[:2] != rgb_res.shape[:2]:
|
|
alpha_channel = cv2.resize(
|
|
alpha_channel, dsize=(rgb_res.shape[1], rgb_res.shape[0])
|
|
)
|
|
rgb_res = np.concatenate(
|
|
(rgb_res, alpha_channel[:, :, np.newaxis]), axis=-1
|
|
)
|
|
|
|
response = make_response(
|
|
send_file(
|
|
io.BytesIO(
|
|
pil_to_bytes(
|
|
Image.fromarray(rgb_res),
|
|
ext,
|
|
quality=image_quality,
|
|
exif_infos=exif_infos,
|
|
)
|
|
),
|
|
mimetype=f"image/{ext}",
|
|
)
|
|
)
|
|
return response
|
|
|
|
|
|
@app.route("/server_config", methods=["GET"])
|
|
def get_server_config():
|
|
return {
|
|
"isControlNet": is_controlnet,
|
|
"controlNetMethod": controlnet_method,
|
|
"isDisableModelSwitchState": is_disable_model_switch,
|
|
"isEnableAutoSaving": is_enable_auto_saving,
|
|
"enableFileManager": is_enable_file_manager,
|
|
"plugins": list(plugins.keys()),
|
|
"freeSupportedModels": MODELS_SUPPORT_FREEU,
|
|
"freeuDefaultConfigs": FREEU_DEFAULT_CONFIGS,
|
|
"lcmLoraSupportedModels": MODELS_SUPPORT_LCM_LORA,
|
|
}, 200
|
|
|
|
|
|
@app.route("/model")
|
|
def current_model():
|
|
return model.name, 200
|
|
|
|
|
|
@app.route("/model_downloaded/<name>")
|
|
def model_downloaded(name):
|
|
return str(model.is_downloaded(name)), 200
|
|
|
|
|
|
@app.route("/is_desktop")
|
|
def get_is_desktop():
|
|
return str(is_desktop), 200
|
|
|
|
|
|
@app.route("/model", methods=["POST"])
|
|
def switch_model():
|
|
if is_disable_model_switch:
|
|
return "Switch model is disabled", 400
|
|
|
|
new_name = request.form.get("name")
|
|
if new_name == model.name:
|
|
return "Same model", 200
|
|
|
|
try:
|
|
model.switch(new_name)
|
|
except NotImplementedError:
|
|
return f"{new_name} not implemented", 403
|
|
return f"ok, switch to {new_name}", 200
|
|
|
|
|
|
@app.route("/")
|
|
def index():
|
|
return send_file(os.path.join(BUILD_DIR, "index.html"))
|
|
|
|
|
|
@app.route("/inputimage")
|
|
def set_input_photo():
|
|
if input_image_path:
|
|
with open(input_image_path, "rb") as f:
|
|
image_in_bytes = f.read()
|
|
return send_file(
|
|
input_image_path,
|
|
as_attachment=True,
|
|
download_name=Path(input_image_path).name,
|
|
mimetype=f"image/{get_image_ext(image_in_bytes)}",
|
|
)
|
|
else:
|
|
return "No Input Image"
|
|
|
|
|
|
def build_plugins(args):
|
|
global plugins
|
|
if args.enable_interactive_seg:
|
|
logger.info(f"Initialize {InteractiveSeg.name} plugin")
|
|
plugins[InteractiveSeg.name] = InteractiveSeg(
|
|
args.interactive_seg_model, args.interactive_seg_device
|
|
)
|
|
|
|
if args.enable_remove_bg:
|
|
logger.info(f"Initialize {RemoveBG.name} plugin")
|
|
plugins[RemoveBG.name] = RemoveBG()
|
|
|
|
if args.enable_anime_seg:
|
|
logger.info(f"Initialize {AnimeSeg.name} plugin")
|
|
plugins[AnimeSeg.name] = AnimeSeg()
|
|
|
|
if args.enable_realesrgan:
|
|
logger.info(
|
|
f"Initialize {RealESRGANUpscaler.name} plugin: {args.realesrgan_model}, {args.realesrgan_device}"
|
|
)
|
|
plugins[RealESRGANUpscaler.name] = RealESRGANUpscaler(
|
|
args.realesrgan_model,
|
|
args.realesrgan_device,
|
|
no_half=args.realesrgan_no_half,
|
|
)
|
|
|
|
if args.enable_gfpgan:
|
|
logger.info(f"Initialize {GFPGANPlugin.name} plugin")
|
|
if args.enable_realesrgan:
|
|
logger.info("Use realesrgan as GFPGAN background upscaler")
|
|
else:
|
|
logger.info(
|
|
f"GFPGAN no background upscaler, use --enable-realesrgan to enable it"
|
|
)
|
|
plugins[GFPGANPlugin.name] = GFPGANPlugin(
|
|
args.gfpgan_device, upscaler=plugins.get(RealESRGANUpscaler.name, None)
|
|
)
|
|
|
|
if args.enable_restoreformer:
|
|
logger.info(f"Initialize {RestoreFormerPlugin.name} plugin")
|
|
plugins[RestoreFormerPlugin.name] = RestoreFormerPlugin(
|
|
args.restoreformer_device,
|
|
upscaler=plugins.get(RealESRGANUpscaler.name, None),
|
|
)
|
|
|
|
if args.enable_gif:
|
|
logger.info(f"Initialize GIF plugin")
|
|
plugins[MakeGIF.name] = MakeGIF()
|
|
|
|
|
|
def main(args):
|
|
global model
|
|
global device
|
|
global input_image_path
|
|
global is_disable_model_switch
|
|
global is_enable_file_manager
|
|
global is_desktop
|
|
global thumb
|
|
global output_dir
|
|
global is_enable_auto_saving
|
|
global is_controlnet
|
|
global controlnet_method
|
|
global image_quality
|
|
|
|
build_plugins(args)
|
|
|
|
image_quality = args.quality
|
|
|
|
if args.sd_controlnet and args.model in SD15_MODELS:
|
|
is_controlnet = True
|
|
controlnet_method = args.sd_controlnet_method
|
|
|
|
output_dir = args.output_dir
|
|
if output_dir:
|
|
is_enable_auto_saving = True
|
|
|
|
device = torch.device(args.device)
|
|
is_disable_model_switch = args.disable_model_switch
|
|
is_desktop = args.gui
|
|
if is_disable_model_switch:
|
|
logger.info(
|
|
f"Start with --disable-model-switch, model switch on frontend is disable"
|
|
)
|
|
|
|
if args.input and os.path.isdir(args.input):
|
|
logger.info(f"Initialize file manager")
|
|
thumb = FileManager(app)
|
|
is_enable_file_manager = True
|
|
app.config["THUMBNAIL_MEDIA_ROOT"] = args.input
|
|
app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join(
|
|
args.output_dir, "lama_cleaner_thumbnails"
|
|
)
|
|
thumb.output_dir = Path(args.output_dir)
|
|
# thumb.start()
|
|
# try:
|
|
# while True:
|
|
# time.sleep(1)
|
|
# finally:
|
|
# thumb.image_dir_observer.stop()
|
|
# thumb.image_dir_observer.join()
|
|
# thumb.output_dir_observer.stop()
|
|
# thumb.output_dir_observer.join()
|
|
|
|
else:
|
|
input_image_path = args.input
|
|
|
|
model = ModelManager(
|
|
name=args.model,
|
|
sd_controlnet=args.sd_controlnet,
|
|
sd_controlnet_method=args.sd_controlnet_method,
|
|
device=device,
|
|
no_half=args.no_half,
|
|
hf_access_token=args.hf_access_token,
|
|
disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw,
|
|
sd_cpu_textencoder=args.sd_cpu_textencoder,
|
|
sd_run_local=args.sd_run_local,
|
|
sd_local_model_path=args.sd_local_model_path,
|
|
local_files_only=args.local_files_only,
|
|
cpu_offload=args.cpu_offload,
|
|
enable_xformers=args.sd_enable_xformers or args.enable_xformers,
|
|
callback=diffuser_callback,
|
|
)
|
|
|
|
if args.gui:
|
|
app_width, app_height = args.gui_size
|
|
from flaskwebgui import FlaskUI
|
|
|
|
ui = FlaskUI(
|
|
app,
|
|
socketio=socketio,
|
|
width=app_width,
|
|
height=app_height,
|
|
host=args.host,
|
|
port=args.port,
|
|
close_server_on_exit=not args.no_gui_auto_close,
|
|
)
|
|
ui.run()
|
|
else:
|
|
socketio.run(
|
|
app,
|
|
host=args.host,
|
|
port=args.port,
|
|
debug=args.debug,
|
|
allow_unsafe_werkzeug=True,
|
|
)
|