428 lines
14 KiB
Python
428 lines
14 KiB
Python
import os
|
||
import time
|
||
|
||
import cv2
|
||
import skimage
|
||
import torch
|
||
import torch.nn.functional as F
|
||
|
||
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
|
||
from lama_cleaner.schema import Config
|
||
import numpy as np
|
||
|
||
from lama_cleaner.model.base import InpaintModel
|
||
|
||
ZITS_INPAINT_MODEL_URL = os.environ.get(
|
||
"ZITS_INPAINT_MODEL_URL",
|
||
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
|
||
)
|
||
|
||
ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
|
||
"ZITS_EDGE_LINE_MODEL_URL",
|
||
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
|
||
)
|
||
|
||
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
|
||
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
|
||
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
|
||
)
|
||
|
||
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
|
||
"ZITS_WIRE_FRAME_MODEL_URL",
|
||
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
|
||
)
|
||
|
||
|
||
def resize(img, height, width, center_crop=False):
|
||
imgh, imgw = img.shape[0:2]
|
||
|
||
if center_crop and imgh != imgw:
|
||
# center crop
|
||
side = np.minimum(imgh, imgw)
|
||
j = (imgh - side) // 2
|
||
i = (imgw - side) // 2
|
||
img = img[j : j + side, i : i + side, ...]
|
||
|
||
if imgh > height and imgw > width:
|
||
inter = cv2.INTER_AREA
|
||
else:
|
||
inter = cv2.INTER_LINEAR
|
||
img = cv2.resize(img, (height, width), interpolation=inter)
|
||
|
||
return img
|
||
|
||
|
||
def to_tensor(img, scale=True, norm=False):
|
||
if img.ndim == 2:
|
||
img = img[:, :, np.newaxis]
|
||
c = img.shape[-1]
|
||
|
||
if scale:
|
||
img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255)
|
||
else:
|
||
img_t = torch.from_numpy(img).permute(2, 0, 1).float()
|
||
|
||
if norm:
|
||
mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
|
||
std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
|
||
img_t = (img_t - mean) / std
|
||
return img_t
|
||
|
||
|
||
def load_masked_position_encoding(mask):
|
||
ones_filter = np.ones((3, 3), dtype=np.float32)
|
||
d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
|
||
d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
|
||
d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
|
||
d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
|
||
str_size = 256
|
||
pos_num = 128
|
||
|
||
ori_mask = mask.copy()
|
||
ori_h, ori_w = ori_mask.shape[0:2]
|
||
ori_mask = ori_mask / 255
|
||
mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
|
||
mask[mask > 0] = 255
|
||
h, w = mask.shape[0:2]
|
||
mask3 = mask.copy()
|
||
mask3 = 1.0 - (mask3 / 255.0)
|
||
pos = np.zeros((h, w), dtype=np.int32)
|
||
direct = np.zeros((h, w, 4), dtype=np.int32)
|
||
i = 0
|
||
while np.sum(1 - mask3) > 0:
|
||
i += 1
|
||
mask3_ = cv2.filter2D(mask3, -1, ones_filter)
|
||
mask3_[mask3_ > 0] = 1
|
||
sub_mask = mask3_ - mask3
|
||
pos[sub_mask == 1] = i
|
||
|
||
m = cv2.filter2D(mask3, -1, d_filter1)
|
||
m[m > 0] = 1
|
||
m = m - mask3
|
||
direct[m == 1, 0] = 1
|
||
|
||
m = cv2.filter2D(mask3, -1, d_filter2)
|
||
m[m > 0] = 1
|
||
m = m - mask3
|
||
direct[m == 1, 1] = 1
|
||
|
||
m = cv2.filter2D(mask3, -1, d_filter3)
|
||
m[m > 0] = 1
|
||
m = m - mask3
|
||
direct[m == 1, 2] = 1
|
||
|
||
m = cv2.filter2D(mask3, -1, d_filter4)
|
||
m[m > 0] = 1
|
||
m = m - mask3
|
||
direct[m == 1, 3] = 1
|
||
|
||
mask3 = mask3_
|
||
|
||
abs_pos = pos.copy()
|
||
rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1
|
||
rel_pos = (rel_pos * pos_num).astype(np.int32)
|
||
rel_pos = np.clip(rel_pos, 0, pos_num - 1)
|
||
|
||
if ori_w != w or ori_h != h:
|
||
rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
|
||
rel_pos[ori_mask == 0] = 0
|
||
direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
|
||
direct[ori_mask == 0, :] = 0
|
||
|
||
return rel_pos, abs_pos, direct
|
||
|
||
|
||
def load_image(img, mask, device, sigma256=3.0):
|
||
"""
|
||
Args:
|
||
img: [H, W, C] RGB
|
||
mask: [H, W] 255 为 masks 区域
|
||
sigma256:
|
||
|
||
Returns:
|
||
|
||
"""
|
||
h, w, _ = img.shape
|
||
imgh, imgw = img.shape[0:2]
|
||
img_256 = resize(img, 256, 256)
|
||
|
||
mask = (mask > 127).astype(np.uint8) * 255
|
||
mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA)
|
||
mask_256[mask_256 > 0] = 255
|
||
|
||
mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA)
|
||
mask_512[mask_512 > 0] = 255
|
||
|
||
# original skimage implemention
|
||
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
|
||
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
|
||
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
|
||
gray_256 = skimage.color.rgb2gray(img_256)
|
||
edge_256 = skimage.feature.canny(gray_256, sigma=sigma256, mask=None).astype(float)
|
||
# cv2.imwrite("skimage_gray.jpg", (_gray_256*255).astype(np.uint8))
|
||
# cv2.imwrite("skimage_edge.jpg", (_edge_256*255).astype(np.uint8))
|
||
|
||
# gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
|
||
# gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(3,3), sigmaX=sigma256, sigmaY=sigma256)
|
||
# edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
|
||
# cv2.imwrite("edge.jpg", edge_256)
|
||
|
||
# line
|
||
img_512 = resize(img, 512, 512)
|
||
|
||
rel_pos, abs_pos, direct = load_masked_position_encoding(mask)
|
||
|
||
batch = dict()
|
||
batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device)
|
||
batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device)
|
||
batch["masks"] = to_tensor(mask).unsqueeze(0).to(device)
|
||
batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device)
|
||
batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device)
|
||
batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device)
|
||
batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device)
|
||
batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device)
|
||
batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device)
|
||
batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device)
|
||
batch["h"] = imgh
|
||
batch["w"] = imgw
|
||
|
||
return batch
|
||
|
||
|
||
def to_device(data, device):
|
||
if isinstance(data, torch.Tensor):
|
||
return data.to(device)
|
||
if isinstance(data, dict):
|
||
for key in data:
|
||
if isinstance(data[key], torch.Tensor):
|
||
data[key] = data[key].to(device)
|
||
return data
|
||
if isinstance(data, list):
|
||
return [to_device(d, device) for d in data]
|
||
|
||
|
||
class ZITS(InpaintModel):
|
||
min_size = 256
|
||
pad_mod = 32
|
||
pad_to_square = True
|
||
|
||
def __init__(self, device):
|
||
"""
|
||
|
||
Args:
|
||
device:
|
||
"""
|
||
super().__init__(device)
|
||
self.device = device
|
||
self.sample_edge_line_iterations = 1
|
||
|
||
def init_model(self, device, **kwargs):
|
||
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device)
|
||
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device)
|
||
self.structure_upsample = load_jit_model(
|
||
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device
|
||
)
|
||
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device)
|
||
|
||
@staticmethod
|
||
def is_downloaded() -> bool:
|
||
model_paths = [
|
||
get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL),
|
||
get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL),
|
||
get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL),
|
||
get_cache_path_by_url(ZITS_INPAINT_MODEL_URL),
|
||
]
|
||
return all([os.path.exists(it) for it in model_paths])
|
||
|
||
def wireframe_edge_and_line(self, items, enable: bool):
|
||
# 最终向 items 中添加 edge 和 line key
|
||
if not enable:
|
||
items["edge"] = torch.zeros_like(items["masks"])
|
||
items["line"] = torch.zeros_like(items["masks"])
|
||
return
|
||
|
||
start = time.time()
|
||
try:
|
||
line_256 = self.wireframe_forward(
|
||
items["img_512"],
|
||
h=256,
|
||
w=256,
|
||
masks=items["mask_512"],
|
||
mask_th=0.85,
|
||
)
|
||
except:
|
||
line_256 = torch.zeros_like(items["mask_256"])
|
||
|
||
print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms")
|
||
|
||
# np_line = (line[0][0].numpy() * 255).astype(np.uint8)
|
||
# cv2.imwrite("line.jpg", np_line)
|
||
|
||
start = time.time()
|
||
edge_pred, line_pred = self.sample_edge_line_logits(
|
||
context=[items["img_256"], items["edge_256"], line_256],
|
||
mask=items["mask_256"].clone(),
|
||
iterations=self.sample_edge_line_iterations,
|
||
add_v=0.05,
|
||
mul_v=4,
|
||
)
|
||
print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms")
|
||
|
||
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
|
||
# cv2.imwrite("edge_pred.jpg", np_edge_pred)
|
||
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
|
||
# cv2.imwrite("line_pred.jpg", np_line_pred)
|
||
# exit()
|
||
|
||
input_size = min(items["h"], items["w"])
|
||
if input_size != 256 and input_size > 256:
|
||
while edge_pred.shape[2] < input_size:
|
||
edge_pred = self.structure_upsample(edge_pred)
|
||
edge_pred = torch.sigmoid((edge_pred + 2) * 2)
|
||
|
||
line_pred = self.structure_upsample(line_pred)
|
||
line_pred = torch.sigmoid((line_pred + 2) * 2)
|
||
|
||
edge_pred = F.interpolate(
|
||
edge_pred,
|
||
size=(input_size, input_size),
|
||
mode="bilinear",
|
||
align_corners=False,
|
||
)
|
||
line_pred = F.interpolate(
|
||
line_pred,
|
||
size=(input_size, input_size),
|
||
mode="bilinear",
|
||
align_corners=False,
|
||
)
|
||
|
||
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
|
||
# cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred)
|
||
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
|
||
# cv2.imwrite("line_pred_upsample.jpg", np_line_pred)
|
||
# exit()
|
||
|
||
items["edge"] = edge_pred.detach()
|
||
items["line"] = line_pred.detach()
|
||
|
||
@torch.no_grad()
|
||
def forward(self, image, mask, config: Config):
|
||
"""Input images and output images have same size
|
||
images: [H, W, C] RGB
|
||
masks: [H, W]
|
||
return: BGR IMAGE
|
||
"""
|
||
mask = mask[:, :, 0]
|
||
items = load_image(image, mask, device=self.device)
|
||
|
||
self.wireframe_edge_and_line(items, config.zits_wireframe)
|
||
|
||
inpainted_image = self.inpaint(
|
||
items["images"],
|
||
items["masks"],
|
||
items["edge"],
|
||
items["line"],
|
||
items["rel_pos"],
|
||
items["direct"],
|
||
)
|
||
|
||
inpainted_image = inpainted_image * 255.0
|
||
inpainted_image = (
|
||
inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8)
|
||
)
|
||
inpainted_image = inpainted_image[:, :, ::-1]
|
||
|
||
# cv2.imwrite("inpainted.jpg", inpainted_image)
|
||
# exit()
|
||
|
||
return inpainted_image
|
||
|
||
def wireframe_forward(self, images, h, w, masks, mask_th=0.925):
|
||
lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1)
|
||
lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1)
|
||
images = images * 255.0
|
||
# the masks value of lcnn is 127.5
|
||
masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5
|
||
masked_images = (masked_images - lcnn_mean) / lcnn_std
|
||
|
||
def to_int(x):
|
||
return tuple(map(int, x))
|
||
|
||
lines_tensor = []
|
||
lmap = np.zeros((h, w))
|
||
|
||
output_masked = self.wireframe(masked_images)
|
||
|
||
output_masked = to_device(output_masked, "cpu")
|
||
if output_masked["num_proposals"] == 0:
|
||
lines_masked = []
|
||
scores_masked = []
|
||
else:
|
||
lines_masked = output_masked["lines_pred"].numpy()
|
||
lines_masked = [
|
||
[line[1] * h, line[0] * w, line[3] * h, line[2] * w]
|
||
for line in lines_masked
|
||
]
|
||
scores_masked = output_masked["lines_score"].numpy()
|
||
|
||
for line, score in zip(lines_masked, scores_masked):
|
||
if score > mask_th:
|
||
rr, cc, value = skimage.draw.line_aa(
|
||
*to_int(line[0:2]), *to_int(line[2:4])
|
||
)
|
||
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
|
||
|
||
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
|
||
lines_tensor.append(to_tensor(lmap).unsqueeze(0))
|
||
|
||
lines_tensor = torch.cat(lines_tensor, dim=0)
|
||
return lines_tensor.detach().to(self.device)
|
||
|
||
def sample_edge_line_logits(
|
||
self, context, mask=None, iterations=1, add_v=0, mul_v=4
|
||
):
|
||
[img, edge, line] = context
|
||
|
||
img = img * (1 - mask)
|
||
edge = edge * (1 - mask)
|
||
line = line * (1 - mask)
|
||
|
||
for i in range(iterations):
|
||
edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask)
|
||
|
||
edge_pred = torch.sigmoid(edge_logits)
|
||
line_pred = torch.sigmoid((line_logits + add_v) * mul_v)
|
||
edge = edge + edge_pred * mask
|
||
edge[edge >= 0.25] = 1
|
||
edge[edge < 0.25] = 0
|
||
line = line + line_pred * mask
|
||
|
||
b, _, h, w = edge_pred.shape
|
||
edge_pred = edge_pred.reshape(b, -1, 1)
|
||
line_pred = line_pred.reshape(b, -1, 1)
|
||
mask = mask.reshape(b, -1)
|
||
|
||
edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1)
|
||
line_probs = torch.cat([1 - line_pred, line_pred], dim=-1)
|
||
edge_probs[:, :, 1] += 0.5
|
||
line_probs[:, :, 1] += 0.5
|
||
edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100)
|
||
line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100)
|
||
|
||
indices = torch.sort(
|
||
edge_max_probs + line_max_probs, dim=-1, descending=True
|
||
)[1]
|
||
|
||
for ii in range(b):
|
||
keep = int((i + 1) / iterations * torch.sum(mask[ii, ...]))
|
||
|
||
assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!"
|
||
mask[ii][indices[ii, :keep]] = 0
|
||
|
||
mask = mask.reshape(b, 1, h, w)
|
||
edge = edge * (1 - mask)
|
||
line = line * (1 - mask)
|
||
|
||
edge, line = edge.to(torch.float32), line.to(torch.float32)
|
||
return edge, line
|