169 lines
4.6 KiB
Python
169 lines
4.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import torch
|
|
|
|
from functools import partial
|
|
|
|
from lama_cleaner.plugins.segment_anything.modeling.tiny_vit_sam import TinyViT
|
|
|
|
from .modeling import (
|
|
ImageEncoderViT,
|
|
MaskDecoder,
|
|
PromptEncoder,
|
|
Sam,
|
|
TwoWayTransformer,
|
|
)
|
|
|
|
|
|
def build_sam_vit_h(checkpoint=None):
|
|
return _build_sam(
|
|
encoder_embed_dim=1280,
|
|
encoder_depth=32,
|
|
encoder_num_heads=16,
|
|
encoder_global_attn_indexes=[7, 15, 23, 31],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
build_sam = build_sam_vit_h
|
|
|
|
|
|
def build_sam_vit_l(checkpoint=None):
|
|
return _build_sam(
|
|
encoder_embed_dim=1024,
|
|
encoder_depth=24,
|
|
encoder_num_heads=16,
|
|
encoder_global_attn_indexes=[5, 11, 17, 23],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def build_sam_vit_b(checkpoint=None):
|
|
return _build_sam(
|
|
encoder_embed_dim=768,
|
|
encoder_depth=12,
|
|
encoder_num_heads=12,
|
|
encoder_global_attn_indexes=[2, 5, 8, 11],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def build_sam_vit_t(checkpoint=None):
|
|
prompt_embed_dim = 256
|
|
image_size = 1024
|
|
vit_patch_size = 16
|
|
image_embedding_size = image_size // vit_patch_size
|
|
mobile_sam = Sam(
|
|
image_encoder=TinyViT(
|
|
img_size=1024,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
embed_dims=[64, 128, 160, 320],
|
|
depths=[2, 2, 6, 2],
|
|
num_heads=[2, 4, 5, 10],
|
|
window_sizes=[7, 7, 14, 7],
|
|
mlp_ratio=4.0,
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
use_checkpoint=False,
|
|
mbconv_expand_ratio=4.0,
|
|
local_conv_size=3,
|
|
layer_lr_decay=0.8,
|
|
),
|
|
prompt_encoder=PromptEncoder(
|
|
embed_dim=prompt_embed_dim,
|
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
|
input_image_size=(image_size, image_size),
|
|
mask_in_chans=16,
|
|
),
|
|
mask_decoder=MaskDecoder(
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=prompt_embed_dim,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=prompt_embed_dim,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
),
|
|
pixel_mean=[123.675, 116.28, 103.53],
|
|
pixel_std=[58.395, 57.12, 57.375],
|
|
)
|
|
|
|
mobile_sam.eval()
|
|
if checkpoint is not None:
|
|
with open(checkpoint, "rb") as f:
|
|
state_dict = torch.load(f)
|
|
mobile_sam.load_state_dict(state_dict)
|
|
return mobile_sam
|
|
|
|
|
|
sam_model_registry = {
|
|
"default": build_sam,
|
|
"vit_h": build_sam,
|
|
"vit_l": build_sam_vit_l,
|
|
"vit_b": build_sam_vit_b,
|
|
"mobile_sam": build_sam_vit_t,
|
|
}
|
|
|
|
|
|
def _build_sam(
|
|
encoder_embed_dim,
|
|
encoder_depth,
|
|
encoder_num_heads,
|
|
encoder_global_attn_indexes,
|
|
checkpoint=None,
|
|
):
|
|
prompt_embed_dim = 256
|
|
image_size = 1024
|
|
vit_patch_size = 16
|
|
image_embedding_size = image_size // vit_patch_size
|
|
sam = Sam(
|
|
image_encoder=ImageEncoderViT(
|
|
depth=encoder_depth,
|
|
embed_dim=encoder_embed_dim,
|
|
img_size=image_size,
|
|
mlp_ratio=4,
|
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
|
num_heads=encoder_num_heads,
|
|
patch_size=vit_patch_size,
|
|
qkv_bias=True,
|
|
use_rel_pos=True,
|
|
global_attn_indexes=encoder_global_attn_indexes,
|
|
window_size=14,
|
|
out_chans=prompt_embed_dim,
|
|
),
|
|
prompt_encoder=PromptEncoder(
|
|
embed_dim=prompt_embed_dim,
|
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
|
input_image_size=(image_size, image_size),
|
|
mask_in_chans=16,
|
|
),
|
|
mask_decoder=MaskDecoder(
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=prompt_embed_dim,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=prompt_embed_dim,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
),
|
|
pixel_mean=[123.675, 116.28, 103.53],
|
|
pixel_std=[58.395, 57.12, 57.375],
|
|
)
|
|
sam.eval()
|
|
if checkpoint is not None:
|
|
with open(checkpoint, "rb") as f:
|
|
state_dict = torch.load(f)
|
|
sam.load_state_dict(state_dict)
|
|
return sam
|