70af4845af
new file: inpaint/__main__.py new file: inpaint/api.py new file: inpaint/batch_processing.py new file: inpaint/benchmark.py new file: inpaint/cli.py new file: inpaint/const.py new file: inpaint/download.py new file: inpaint/file_manager/__init__.py new file: inpaint/file_manager/file_manager.py new file: inpaint/file_manager/storage_backends.py new file: inpaint/file_manager/utils.py new file: inpaint/helper.py new file: inpaint/installer.py new file: inpaint/model/__init__.py new file: inpaint/model/anytext/__init__.py new file: inpaint/model/anytext/anytext_model.py new file: inpaint/model/anytext/anytext_pipeline.py new file: inpaint/model/anytext/anytext_sd15.yaml new file: inpaint/model/anytext/cldm/__init__.py new file: inpaint/model/anytext/cldm/cldm.py new file: inpaint/model/anytext/cldm/ddim_hacked.py new file: inpaint/model/anytext/cldm/embedding_manager.py new file: inpaint/model/anytext/cldm/hack.py new file: inpaint/model/anytext/cldm/model.py new file: inpaint/model/anytext/cldm/recognizer.py new file: inpaint/model/anytext/ldm/__init__.py new file: inpaint/model/anytext/ldm/models/__init__.py new file: inpaint/model/anytext/ldm/models/autoencoder.py new file: inpaint/model/anytext/ldm/models/diffusion/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/ddim.py new file: inpaint/model/anytext/ldm/models/diffusion/ddpm.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file: inpaint/model/anytext/ldm/models/diffusion/plms.py new file: inpaint/model/anytext/ldm/models/diffusion/sampling_util.py new file: inpaint/model/anytext/ldm/modules/__init__.py new file: inpaint/model/anytext/ldm/modules/attention.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/model.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/util.py new file: inpaint/model/anytext/ldm/modules/distributions/__init__.py new file: inpaint/model/anytext/ldm/modules/distributions/distributions.py new file: inpaint/model/anytext/ldm/modules/ema.py new file: inpaint/model/anytext/ldm/modules/encoders/__init__.py new file: inpaint/model/anytext/ldm/modules/encoders/modules.py new file: inpaint/model/anytext/ldm/util.py new file: inpaint/model/anytext/main.py new file: inpaint/model/anytext/ocr_recog/RNN.py new file: inpaint/model/anytext/ocr_recog/RecCTCHead.py new file: inpaint/model/anytext/ocr_recog/RecModel.py new file: inpaint/model/anytext/ocr_recog/RecMv1_enhance.py new file: inpaint/model/anytext/ocr_recog/RecSVTR.py new file: inpaint/model/anytext/ocr_recog/__init__.py new file: inpaint/model/anytext/ocr_recog/common.py new file: inpaint/model/anytext/ocr_recog/en_dict.txt new file: inpaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file: inpaint/model/anytext/utils.py new file: inpaint/model/base.py new file: inpaint/model/brushnet/__init__.py new file: inpaint/model/brushnet/brushnet.py new file: inpaint/model/brushnet/brushnet_unet_forward.py new file: inpaint/model/brushnet/brushnet_wrapper.py new file: inpaint/model/brushnet/pipeline_brushnet.py new file: inpaint/model/brushnet/unet_2d_blocks.py new file: inpaint/model/controlnet.py new file: inpaint/model/ddim_sampler.py new file: inpaint/model/fcf.py new file: inpaint/model/helper/__init__.py new file: inpaint/model/helper/controlnet_preprocess.py new file: inpaint/model/helper/cpu_text_encoder.py new file: inpaint/model/helper/g_diffuser_bot.py new file: inpaint/model/instruct_pix2pix.py new file: inpaint/model/kandinsky.py new file: inpaint/model/lama.py new file: inpaint/model/ldm.py new file: inpaint/model/manga.py new file: inpaint/model/mat.py new file: inpaint/model/mi_gan.py new file: inpaint/model/opencv2.py new file: inpaint/model/original_sd_configs/__init__.py new file: inpaint/model/original_sd_configs/sd_xl_base.yaml new file: inpaint/model/original_sd_configs/sd_xl_refiner.yaml new file: inpaint/model/original_sd_configs/v1-inference.yaml new file: inpaint/model/original_sd_configs/v2-inference-v.yaml new file: inpaint/model/paint_by_example.py new file: inpaint/model/plms_sampler.py new file: inpaint/model/power_paint/__init__.py new file: inpaint/model/power_paint/pipeline_powerpaint.py new file: inpaint/model/power_paint/power_paint.py new file: inpaint/model/power_paint/power_paint_v2.py new file: inpaint/model/power_paint/powerpaint_tokenizer.py
263 lines
7.7 KiB
Python
263 lines
7.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import logging
|
|
|
|
import torch
|
|
from pathlib import Path
|
|
|
|
from .modeling.backbones.hieradet import Hiera
|
|
from .modeling.backbones.image_encoder import ImageEncoder, FpnNeck
|
|
from .modeling.memory_attention import MemoryAttention, MemoryAttentionLayer
|
|
from .modeling.memory_encoder import MemoryEncoder, MaskDownSampler, Fuser, CXBlock
|
|
from .modeling.position_encoding import PositionEmbeddingSine
|
|
from .modeling.sam.transformer import RoPEAttention
|
|
from .modeling.sam2_base import SAM2Base
|
|
|
|
CURRENT_DIR = Path(__file__).parent
|
|
CONFIG_DIR = CURRENT_DIR / "sam2_configs"
|
|
|
|
common_kwargs = dict(
|
|
num_maskmem=7,
|
|
image_size=1024,
|
|
sigmoid_scale_for_mem_enc=20.0,
|
|
sigmoid_bias_for_mem_enc=-10.0,
|
|
use_mask_input_as_output_without_sam=True,
|
|
directly_add_no_mem_embed=True,
|
|
use_high_res_features_in_sam=True,
|
|
multimask_output_in_sam=True,
|
|
iou_prediction_use_sigmoid=True,
|
|
use_obj_ptrs_in_encoder=True,
|
|
add_tpos_enc_to_obj_ptrs=False,
|
|
only_obj_ptrs_in_the_past_for_eval=True,
|
|
pred_obj_scores=True,
|
|
pred_obj_scores_mlp=True,
|
|
fixed_no_obj_ptr=True,
|
|
multimask_output_for_tracking=True,
|
|
use_multimask_token_for_obj_ptr=True,
|
|
multimask_min_pt_num=0,
|
|
multimask_max_pt_num=1,
|
|
use_mlp_for_obj_ptr_proj=True,
|
|
compile_image_encoder=False,
|
|
)
|
|
|
|
|
|
def build_memory_attention():
|
|
return MemoryAttention(
|
|
d_model=256,
|
|
pos_enc_at_input=True,
|
|
layer=MemoryAttentionLayer(
|
|
activation="relu",
|
|
dim_feedforward=2048,
|
|
dropout=0.1,
|
|
pos_enc_at_attn=False,
|
|
self_attention=RoPEAttention(
|
|
rope_theta=10000.0,
|
|
feat_sizes=[32, 32],
|
|
embedding_dim=256,
|
|
num_heads=1,
|
|
downsample_rate=1,
|
|
dropout=0.1,
|
|
),
|
|
d_model=256,
|
|
pos_enc_at_cross_attn_keys=True,
|
|
pos_enc_at_cross_attn_queries=False,
|
|
cross_attention=RoPEAttention(
|
|
rope_theta=10000.0,
|
|
feat_sizes=[32, 32],
|
|
embedding_dim=256,
|
|
num_heads=1,
|
|
downsample_rate=1,
|
|
dropout=0.1,
|
|
kv_in_dim=64,
|
|
),
|
|
),
|
|
num_layers=4,
|
|
)
|
|
|
|
|
|
def build_memory_encoder():
|
|
return MemoryEncoder(
|
|
out_dim=64,
|
|
position_encoding=PositionEmbeddingSine(
|
|
num_pos_feats=64, normalize=True, scale=None, temperature=10000
|
|
),
|
|
mask_downsampler=MaskDownSampler(
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
),
|
|
fuser=Fuser(
|
|
layer=CXBlock(
|
|
dim=256,
|
|
kernel_size=7,
|
|
padding=3,
|
|
layer_scale_init_value=1e-6,
|
|
use_dwconv=True,
|
|
),
|
|
num_layers=2,
|
|
),
|
|
)
|
|
|
|
|
|
def build_sam2_tiny():
|
|
return SAM2Base(
|
|
**common_kwargs,
|
|
image_encoder=ImageEncoder(
|
|
scalp=1,
|
|
trunk=Hiera(
|
|
embed_dim=96,
|
|
num_heads=1,
|
|
stages=(1, 2, 7, 2),
|
|
global_att_blocks=(5, 7, 9),
|
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
|
window_spec=(8, 4, 14, 7),
|
|
),
|
|
neck=FpnNeck(
|
|
position_encoding=PositionEmbeddingSine(
|
|
num_pos_feats=256,
|
|
normalize=True,
|
|
scale=None,
|
|
temperature=10000,
|
|
),
|
|
d_model=256,
|
|
backbone_channel_list=[768, 384, 192, 96],
|
|
fpn_top_down_levels=[2, 3],
|
|
fpn_interp_model="nearest",
|
|
),
|
|
),
|
|
memory_attention=build_memory_attention(),
|
|
memory_encoder=build_memory_encoder(),
|
|
)
|
|
|
|
|
|
def build_sam2_small():
|
|
return SAM2Base(
|
|
**common_kwargs,
|
|
image_encoder=ImageEncoder(
|
|
scalp=1,
|
|
trunk=Hiera(
|
|
embed_dim=96,
|
|
num_heads=1,
|
|
stages=(1, 2, 11, 2),
|
|
global_att_blocks=(7, 10, 13),
|
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
|
window_spec=(8, 4, 14, 7),
|
|
),
|
|
neck=FpnNeck(
|
|
position_encoding=PositionEmbeddingSine(
|
|
num_pos_feats=256,
|
|
normalize=True,
|
|
scale=None,
|
|
temperature=10000,
|
|
),
|
|
d_model=256,
|
|
backbone_channel_list=[768, 384, 192, 96],
|
|
fpn_top_down_levels=[2, 3],
|
|
fpn_interp_model="nearest",
|
|
),
|
|
),
|
|
memory_attention=build_memory_attention(),
|
|
memory_encoder=build_memory_encoder(),
|
|
)
|
|
|
|
|
|
def build_sam2_base():
|
|
return SAM2Base(
|
|
**common_kwargs,
|
|
image_encoder=ImageEncoder(
|
|
scalp=1,
|
|
trunk=Hiera(
|
|
embed_dim=112,
|
|
num_heads=2,
|
|
stages=(2, 3, 16, 3),
|
|
global_att_blocks=(12, 16, 20),
|
|
window_pos_embed_bkg_spatial_size=(14, 14),
|
|
window_spec=(8, 4, 14, 7),
|
|
),
|
|
neck=FpnNeck(
|
|
position_encoding=PositionEmbeddingSine(
|
|
num_pos_feats=256,
|
|
normalize=True,
|
|
scale=None,
|
|
temperature=10000,
|
|
),
|
|
d_model=256,
|
|
backbone_channel_list=[896, 448, 224, 112],
|
|
fpn_top_down_levels=[2, 3],
|
|
fpn_interp_model="nearest",
|
|
),
|
|
),
|
|
memory_attention=build_memory_attention(),
|
|
memory_encoder=build_memory_encoder(),
|
|
)
|
|
|
|
|
|
def build_sam2_large():
|
|
return SAM2Base(
|
|
**common_kwargs,
|
|
image_encoder=ImageEncoder(
|
|
scalp=1,
|
|
trunk=Hiera(
|
|
embed_dim=144,
|
|
num_heads=2,
|
|
stages=(2, 6, 36, 4),
|
|
global_att_blocks=(23, 33, 43),
|
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
|
window_spec=(8, 4, 16, 8),
|
|
),
|
|
neck=FpnNeck(
|
|
position_encoding=PositionEmbeddingSine(
|
|
num_pos_feats=256,
|
|
normalize=True,
|
|
scale=None,
|
|
temperature=10000,
|
|
),
|
|
d_model=256,
|
|
backbone_channel_list=[1152, 576, 288, 144],
|
|
fpn_top_down_levels=[2, 3],
|
|
fpn_interp_model="nearest",
|
|
),
|
|
),
|
|
memory_attention=build_memory_attention(),
|
|
memory_encoder=build_memory_encoder(),
|
|
)
|
|
|
|
|
|
sam2_model_registry = {
|
|
"sam2_tiny": build_sam2_tiny,
|
|
"sam2_small": build_sam2_small,
|
|
"sam2_base": build_sam2_base,
|
|
"sam2_large": build_sam2_large,
|
|
}
|
|
|
|
|
|
def build_sam2(
|
|
name,
|
|
ckpt_path=None,
|
|
device="cuda",
|
|
mode="eval",
|
|
):
|
|
model = sam2_model_registry[name]()
|
|
_load_checkpoint(model, ckpt_path)
|
|
model = model.to(device)
|
|
if mode == "eval":
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def _load_checkpoint(model, ckpt_path):
|
|
if ckpt_path is not None:
|
|
sd = torch.load(ckpt_path, map_location="cpu")["model"]
|
|
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
|
if missing_keys:
|
|
logging.error(missing_keys)
|
|
raise RuntimeError()
|
|
if unexpected_keys:
|
|
logging.error(unexpected_keys)
|
|
raise RuntimeError()
|
|
logging.info("Loaded checkpoint sucessfully")
|