296 lines
12 KiB
Python
296 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
from typing import List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from ..sam2_utils import LayerNorm2d, MLP
|
|
|
|
|
|
class MaskDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
transformer_dim: int,
|
|
transformer: nn.Module,
|
|
num_multimask_outputs: int = 3,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
iou_head_depth: int = 3,
|
|
iou_head_hidden_dim: int = 256,
|
|
use_high_res_features: bool = False,
|
|
iou_prediction_use_sigmoid=False,
|
|
dynamic_multimask_via_stability=False,
|
|
dynamic_multimask_stability_delta=0.05,
|
|
dynamic_multimask_stability_thresh=0.98,
|
|
pred_obj_scores: bool = False,
|
|
pred_obj_scores_mlp: bool = False,
|
|
use_multimask_token_for_obj_ptr: bool = False,
|
|
) -> None:
|
|
"""
|
|
Predicts masks given an image and prompt embeddings, using a
|
|
transformer architecture.
|
|
|
|
Arguments:
|
|
transformer_dim (int): the channel dimension of the transformer
|
|
transformer (nn.Module): the transformer used to predict masks
|
|
num_multimask_outputs (int): the number of masks to predict
|
|
when disambiguating masks
|
|
activation (nn.Module): the type of activation to use when
|
|
upscaling masks
|
|
iou_head_depth (int): the depth of the MLP used to predict
|
|
mask quality
|
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
|
used to predict mask quality
|
|
"""
|
|
super().__init__()
|
|
self.transformer_dim = transformer_dim
|
|
self.transformer = transformer
|
|
|
|
self.num_multimask_outputs = num_multimask_outputs
|
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
|
self.num_mask_tokens = num_multimask_outputs + 1
|
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
|
|
|
self.pred_obj_scores = pred_obj_scores
|
|
if self.pred_obj_scores:
|
|
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
|
|
|
self.output_upscaling = nn.Sequential(
|
|
nn.ConvTranspose2d(
|
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
|
),
|
|
LayerNorm2d(transformer_dim // 4),
|
|
activation(),
|
|
nn.ConvTranspose2d(
|
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
|
),
|
|
activation(),
|
|
)
|
|
self.use_high_res_features = use_high_res_features
|
|
if use_high_res_features:
|
|
self.conv_s0 = nn.Conv2d(
|
|
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
|
)
|
|
self.conv_s1 = nn.Conv2d(
|
|
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
|
)
|
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
|
[
|
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
|
for i in range(self.num_mask_tokens)
|
|
]
|
|
)
|
|
|
|
self.iou_prediction_head = MLP(
|
|
transformer_dim,
|
|
iou_head_hidden_dim,
|
|
self.num_mask_tokens,
|
|
iou_head_depth,
|
|
sigmoid_output=iou_prediction_use_sigmoid,
|
|
)
|
|
if self.pred_obj_scores:
|
|
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
|
if pred_obj_scores_mlp:
|
|
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
|
|
|
# When outputting a single mask, optionally we can dynamically fall back to the best
|
|
# multimask output token if the single mask output token gives low stability scores.
|
|
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
|
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
|
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
|
|
|
def forward(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
multimask_output: bool,
|
|
repeat_image: bool,
|
|
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Predict masks given image and prompt embeddings.
|
|
|
|
Arguments:
|
|
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
|
multimask_output (bool): Whether to return multiple masks or a single
|
|
mask.
|
|
|
|
Returns:
|
|
torch.Tensor: batched predicted masks
|
|
torch.Tensor: batched predictions of mask quality
|
|
torch.Tensor: batched SAM token for mask output
|
|
"""
|
|
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
|
image_embeddings=image_embeddings,
|
|
image_pe=image_pe,
|
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
|
repeat_image=repeat_image,
|
|
high_res_features=high_res_features,
|
|
)
|
|
|
|
# Select the correct mask or masks for output
|
|
if multimask_output:
|
|
masks = masks[:, 1:, :, :]
|
|
iou_pred = iou_pred[:, 1:]
|
|
elif self.dynamic_multimask_via_stability and not self.training:
|
|
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
|
else:
|
|
masks = masks[:, 0:1, :, :]
|
|
iou_pred = iou_pred[:, 0:1]
|
|
|
|
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
|
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
|
else:
|
|
# Take the mask output token. Here we *always* use the token for single mask output.
|
|
# At test time, even if we track after 1-click (and using multimask_output=True),
|
|
# we still take the single mask token here. The rationale is that we always track
|
|
# after multiple clicks during training, so the past tokens seen during training
|
|
# are always the single mask token (and we'll let it be the object-memory token).
|
|
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
|
|
|
# Prepare output
|
|
return masks, iou_pred, sam_tokens_out, object_score_logits
|
|
|
|
def predict_masks(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
repeat_image: bool,
|
|
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Predicts masks. See 'forward' for more details."""
|
|
# Concatenate output tokens
|
|
s = 0
|
|
if self.pred_obj_scores:
|
|
output_tokens = torch.cat(
|
|
[
|
|
self.obj_score_token.weight,
|
|
self.iou_token.weight,
|
|
self.mask_tokens.weight,
|
|
],
|
|
dim=0,
|
|
)
|
|
s = 1
|
|
else:
|
|
output_tokens = torch.cat(
|
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
|
)
|
|
output_tokens = output_tokens.unsqueeze(0).expand(
|
|
sparse_prompt_embeddings.size(0), -1, -1
|
|
)
|
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
|
|
|
# Expand per-image data in batch direction to be per-mask
|
|
if repeat_image:
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
|
else:
|
|
assert image_embeddings.shape[0] == tokens.shape[0]
|
|
src = image_embeddings
|
|
src = src + dense_prompt_embeddings
|
|
assert (
|
|
image_pe.size(0) == 1
|
|
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
|
b, c, h, w = src.shape
|
|
|
|
# Run the transformer
|
|
hs, src = self.transformer(src, pos_src, tokens)
|
|
iou_token_out = hs[:, s, :]
|
|
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
|
|
|
# Upscale mask embeddings and predict masks using the mask tokens
|
|
src = src.transpose(1, 2).view(b, c, h, w)
|
|
if not self.use_high_res_features:
|
|
upscaled_embedding = self.output_upscaling(src)
|
|
else:
|
|
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
|
feat_s0, feat_s1 = high_res_features
|
|
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
|
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
|
|
|
hyper_in_list: List[torch.Tensor] = []
|
|
for i in range(self.num_mask_tokens):
|
|
hyper_in_list.append(
|
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
|
)
|
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
|
b, c, h, w = upscaled_embedding.shape
|
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
|
|
|
# Generate mask quality predictions
|
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
if self.pred_obj_scores:
|
|
assert s == 1
|
|
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
|
else:
|
|
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
|
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
|
|
|
return masks, iou_pred, mask_tokens_out, object_score_logits
|
|
|
|
def _get_stability_scores(self, mask_logits):
|
|
"""
|
|
Compute stability scores of the mask logits based on the IoU between upper and
|
|
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
|
|
"""
|
|
mask_logits = mask_logits.flatten(-2)
|
|
stability_delta = self.dynamic_multimask_stability_delta
|
|
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
|
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
|
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
|
return stability_scores
|
|
|
|
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
|
"""
|
|
When outputting a single mask, if the stability score from the current single-mask
|
|
output (based on output token 0) falls below a threshold, we instead select from
|
|
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
|
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
|
"""
|
|
# The best mask from multimask output tokens (1~3)
|
|
multimask_logits = all_mask_logits[:, 1:, :, :]
|
|
multimask_iou_scores = all_iou_scores[:, 1:]
|
|
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
|
batch_inds = torch.arange(
|
|
multimask_iou_scores.size(0), device=all_iou_scores.device
|
|
)
|
|
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
|
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
|
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
|
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
|
|
|
# The mask from singlemask output token 0 and its stability score
|
|
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
|
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
|
stability_scores = self._get_stability_scores(singlemask_logits)
|
|
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
|
|
|
# Dynamically fall back to best multimask output upon low stability scores.
|
|
mask_logits_out = torch.where(
|
|
is_stable[..., None, None].expand_as(singlemask_logits),
|
|
singlemask_logits,
|
|
best_multimask_logits,
|
|
)
|
|
iou_scores_out = torch.where(
|
|
is_stable.expand_as(singlemask_iou_scores),
|
|
singlemask_iou_scores,
|
|
best_multimask_iou_scores,
|
|
)
|
|
return mask_logits_out, iou_scores_out
|