196 lines
6.1 KiB
Python
196 lines
6.1 KiB
Python
import os
|
|
|
|
from lama_cleaner.const import SD_CONTROLNET_CHOICES
|
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from lama_cleaner.model_manager import ModelManager
|
|
from lama_cleaner.schema import HDStrategy, SDSampler
|
|
from lama_cleaner.tests.test_model import get_config, assert_equal
|
|
|
|
current_dir = Path(__file__).parent.absolute().resolve()
|
|
save_dir = current_dir / "result"
|
|
save_dir.mkdir(exist_ok=True, parents=True)
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
device = torch.device(device)
|
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
|
|
@pytest.mark.parametrize("cpu_textencoder", [True])
|
|
@pytest.mark.parametrize("disable_nsfw", [True])
|
|
@pytest.mark.parametrize("sd_controlnet_method", SD_CONTROLNET_CHOICES)
|
|
def test_runway_sd_1_5(
|
|
sd_device, strategy, sampler, cpu_textencoder, disable_nsfw, sd_controlnet_method
|
|
):
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30
|
|
model = ModelManager(
|
|
name="sd1.5",
|
|
sd_controlnet=True,
|
|
device=torch.device(sd_device),
|
|
hf_access_token="",
|
|
sd_run_local=False,
|
|
disable_nsfw=disable_nsfw,
|
|
sd_cpu_textencoder=cpu_textencoder,
|
|
sd_controlnet_method=sd_controlnet_method,
|
|
)
|
|
|
|
controlnet_conditioning_scale = {
|
|
"control_v11p_sd15_canny": 0.4,
|
|
"control_v11p_sd15_openpose": 0.4,
|
|
"control_v11p_sd15_inpaint": 1.0,
|
|
"control_v11f1p_sd15_depth": 1.0,
|
|
}[sd_controlnet_method]
|
|
|
|
cfg = get_config(
|
|
strategy,
|
|
prompt="a fox sitting on a bench",
|
|
sd_steps=sd_steps,
|
|
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
controlnet_method=sd_controlnet_method,
|
|
)
|
|
cfg.sd_sampler = sampler
|
|
|
|
name = f"device_{sd_device}_{sampler}_cpu_textencoder_disable_nsfw"
|
|
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_controlnet_{sd_controlnet_method}_{name}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
fx=1.2,
|
|
fy=1.2,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
|
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
|
|
def test_local_file_path(sd_device, sampler):
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30
|
|
model = ModelManager(
|
|
name="sd1.5",
|
|
sd_controlnet=True,
|
|
device=torch.device(sd_device),
|
|
hf_access_token="",
|
|
sd_run_local=False,
|
|
disable_nsfw=True,
|
|
sd_cpu_textencoder=False,
|
|
cpu_offload=True,
|
|
sd_local_model_path="/Users/cwq/data/models/sd-v1-5-inpainting.ckpt",
|
|
sd_controlnet_method="control_v11p_sd15_canny",
|
|
)
|
|
cfg = get_config(
|
|
HDStrategy.ORIGINAL,
|
|
prompt="a fox sitting on a bench",
|
|
sd_steps=sd_steps,
|
|
controlnet_method="control_v11p_sd15_canny",
|
|
)
|
|
cfg.sd_sampler = sampler
|
|
|
|
name = f"device_{sd_device}_{sampler}"
|
|
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_controlnet_canny_local_model_{name}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
|
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
|
|
def test_local_file_path_controlnet_native_inpainting(sd_device, sampler):
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30
|
|
model = ModelManager(
|
|
name="sd1.5",
|
|
sd_controlnet=True,
|
|
device=torch.device(sd_device),
|
|
hf_access_token="",
|
|
sd_run_local=False,
|
|
disable_nsfw=True,
|
|
sd_cpu_textencoder=False,
|
|
cpu_offload=True,
|
|
sd_local_model_path="/Users/cwq/data/models/v1-5-pruned-emaonly.safetensors",
|
|
sd_controlnet_method="control_v11p_sd15_inpaint",
|
|
)
|
|
cfg = get_config(
|
|
HDStrategy.ORIGINAL,
|
|
prompt="a fox sitting on a bench",
|
|
sd_steps=sd_steps,
|
|
controlnet_conditioning_scale=1.0,
|
|
sd_strength=1.0,
|
|
controlnet_method="control_v11p_sd15_inpaint",
|
|
)
|
|
cfg.sd_sampler = sampler
|
|
|
|
name = f"device_{sd_device}_{sampler}"
|
|
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_controlnet_local_native_{name}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
|
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
|
|
def test_controlnet_switch(sd_device, sampler):
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
|
|
sd_steps = 1 if sd_device == "cpu" else 30
|
|
model = ModelManager(
|
|
name="sd1.5",
|
|
sd_controlnet=True,
|
|
device=torch.device(sd_device),
|
|
hf_access_token="",
|
|
sd_run_local=False,
|
|
disable_nsfw=True,
|
|
sd_cpu_textencoder=False,
|
|
cpu_offload=True,
|
|
sd_controlnet_method="control_v11p_sd15_canny",
|
|
)
|
|
cfg = get_config(
|
|
HDStrategy.ORIGINAL,
|
|
prompt="a fox sitting on a bench",
|
|
sd_steps=sd_steps,
|
|
controlnet_method="control_v11p_sd15_inpaint",
|
|
)
|
|
cfg.sd_sampler = sampler
|
|
|
|
name = f"device_{sd_device}_{sampler}"
|
|
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_controlnet_switch_to_inpaint_local_model_{name}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
)
|