128 lines
4.0 KiB
Python
128 lines
4.0 KiB
Python
import json
|
|
from pathlib import Path
|
|
from typing import Dict, Optional
|
|
|
|
import cv2
|
|
import psutil
|
|
from PIL import Image
|
|
from loguru import logger
|
|
from rich.console import Console
|
|
from rich.progress import (
|
|
Progress,
|
|
SpinnerColumn,
|
|
TimeElapsedColumn,
|
|
MofNCompleteColumn,
|
|
TextColumn,
|
|
BarColumn,
|
|
TaskProgressColumn,
|
|
)
|
|
|
|
from iopaint.helper import pil_to_bytes
|
|
from iopaint.model.utils import torch_gc
|
|
from iopaint.model_manager import ModelManager
|
|
from iopaint.schema import InpaintRequest
|
|
|
|
|
|
def glob_images(path: Path) -> Dict[str, Path]:
|
|
# png/jpg/jpeg
|
|
if path.is_file():
|
|
return {path.stem: path}
|
|
elif path.is_dir():
|
|
res = {}
|
|
for it in path.glob("*.*"):
|
|
if it.suffix.lower() in [".png", ".jpg", ".jpeg"]:
|
|
res[it.stem] = it
|
|
return res
|
|
|
|
|
|
def batch_inpaint(
|
|
model: str,
|
|
device,
|
|
image: Path,
|
|
mask: Path,
|
|
output: Path,
|
|
config: Optional[Path] = None,
|
|
concat: bool = False,
|
|
):
|
|
if image.is_dir() and output.is_file():
|
|
logger.error(
|
|
f"invalid --output: when image is a directory, output should be a directory"
|
|
)
|
|
exit(-1)
|
|
output.mkdir(parents=True, exist_ok=True)
|
|
|
|
image_paths = glob_images(image)
|
|
mask_paths = glob_images(mask)
|
|
if len(image_paths) == 0:
|
|
logger.error(f"invalid --image: empty image folder")
|
|
exit(-1)
|
|
if len(mask_paths) == 0:
|
|
logger.error(f"invalid --mask: empty mask folder")
|
|
exit(-1)
|
|
|
|
if config is None:
|
|
inpaint_request = InpaintRequest()
|
|
logger.info(f"Using default config: {inpaint_request}")
|
|
else:
|
|
with open(config, "r", encoding="utf-8") as f:
|
|
inpaint_request = InpaintRequest(**json.load(f))
|
|
|
|
model_manager = ModelManager(name=model, device=device)
|
|
first_mask = list(mask_paths.values())[0]
|
|
|
|
console = Console()
|
|
|
|
with Progress(
|
|
SpinnerColumn(),
|
|
TextColumn("[progress.description]{task.description}"),
|
|
BarColumn(),
|
|
TaskProgressColumn(),
|
|
MofNCompleteColumn(),
|
|
TimeElapsedColumn(),
|
|
console=console,
|
|
transient=False,
|
|
) as progress:
|
|
task = progress.add_task("Batch processing...", total=len(image_paths))
|
|
for stem, image_p in image_paths.items():
|
|
if stem not in mask_paths and mask.is_dir():
|
|
progress.log(f"mask for {image_p} not found")
|
|
progress.update(task, advance=1)
|
|
continue
|
|
mask_p = mask_paths.get(stem, first_mask)
|
|
|
|
infos = Image.open(image_p).info
|
|
|
|
img = cv2.imread(str(image_p))
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
|
mask_img = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
|
if mask_img.shape[:2] != img.shape[:2]:
|
|
progress.log(
|
|
f"resize mask {mask_p.name} to image {image_p.name} size: {img.shape[:2]}"
|
|
)
|
|
mask_img = cv2.resize(
|
|
mask_img,
|
|
(img.shape[1], img.shape[0]),
|
|
interpolation=cv2.INTER_NEAREST,
|
|
)
|
|
mask_img[mask_img >= 127] = 255
|
|
mask_img[mask_img < 127] = 0
|
|
|
|
# bgr
|
|
inpaint_result = model_manager(img, mask_img, inpaint_request)
|
|
inpaint_result = cv2.cvtColor(inpaint_result, cv2.COLOR_BGR2RGB)
|
|
if concat:
|
|
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
|
|
inpaint_result = cv2.hconcat([img, mask_img, inpaint_result])
|
|
|
|
img_bytes = pil_to_bytes(Image.fromarray(inpaint_result), "png", 100, infos)
|
|
save_p = output / f"{stem}.png"
|
|
with open(save_p, "wb") as fw:
|
|
fw.write(img_bytes)
|
|
|
|
progress.update(task, advance=1)
|
|
torch_gc()
|
|
# pid = psutil.Process().pid
|
|
# memory_info = psutil.Process(pid).memory_info()
|
|
# memory_in_mb = memory_info.rss / (1024 * 1024)
|
|
# print(f"原图大小:{img.shape},当前进程的内存占用:{memory_in_mb}MB")
|