195 lines
5.7 KiB
Python
195 lines
5.7 KiB
Python
from pathlib import Path
|
|
|
|
import cv2
|
|
import pytest
|
|
import torch
|
|
|
|
from lama_cleaner.model_manager import ModelManager
|
|
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
|
|
|
|
current_dir = Path(__file__).parent.absolute().resolve()
|
|
save_dir = current_dir / "result"
|
|
save_dir.mkdir(exist_ok=True, parents=True)
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
device = torch.device(device)
|
|
|
|
|
|
def get_data(
|
|
fx: float = 1,
|
|
fy: float = 1.0,
|
|
img_p=current_dir / "image.png",
|
|
mask_p=current_dir / "mask.png",
|
|
):
|
|
img = cv2.imread(str(img_p))
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
|
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
|
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
|
|
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
|
|
return img, mask
|
|
|
|
|
|
def get_config(strategy, **kwargs):
|
|
data = dict(
|
|
ldm_steps=1,
|
|
ldm_sampler=LDMSampler.plms,
|
|
hd_strategy=strategy,
|
|
hd_strategy_crop_margin=32,
|
|
hd_strategy_crop_trigger_size=200,
|
|
hd_strategy_resize_limit=200,
|
|
)
|
|
data.update(**kwargs)
|
|
return Config(**data)
|
|
|
|
|
|
def assert_equal(
|
|
model,
|
|
config,
|
|
gt_name,
|
|
fx: float = 1,
|
|
fy: float = 1,
|
|
img_p=current_dir / "image.png",
|
|
mask_p=current_dir / "mask.png",
|
|
):
|
|
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
|
print(f"Input image shape: {img.shape}")
|
|
res = model(img, mask, config)
|
|
cv2.imwrite(
|
|
str(save_dir / gt_name),
|
|
res,
|
|
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
|
|
)
|
|
|
|
"""
|
|
Note that JPEG is lossy compression, so even if it is the highest quality 100,
|
|
when the saved images is reloaded, a difference occurs with the original pixel value.
|
|
If you want to save the original images as it is, save it as PNG or BMP.
|
|
"""
|
|
# gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
|
|
# assert np.array_equal(res, gt)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
)
|
|
def test_lama(strategy):
|
|
model = ModelManager(name="lama", device=device)
|
|
assert_equal(
|
|
model,
|
|
get_config(strategy),
|
|
f"lama_{strategy[0].upper() + strategy[1:]}_result.png",
|
|
)
|
|
|
|
fx = 1.3
|
|
assert_equal(
|
|
model,
|
|
get_config(strategy),
|
|
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png",
|
|
fx=1.3,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
)
|
|
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms])
|
|
def test_ldm(strategy, ldm_sampler):
|
|
model = ModelManager(name="ldm", device=device)
|
|
cfg = get_config(strategy, ldm_sampler=ldm_sampler)
|
|
assert_equal(
|
|
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png"
|
|
)
|
|
|
|
fx = 1.3
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png",
|
|
fx=fx,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
)
|
|
@pytest.mark.parametrize("zits_wireframe", [False, True])
|
|
def test_zits(strategy, zits_wireframe):
|
|
model = ModelManager(name="zits", device=device)
|
|
cfg = get_config(strategy, zits_wireframe=zits_wireframe)
|
|
# os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg')
|
|
# os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg')
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png",
|
|
)
|
|
|
|
fx = 1.3
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
|
fx=fx,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
@pytest.mark.parametrize("no_half", [True, False])
|
|
def test_mat(strategy, no_half):
|
|
model = ModelManager(name="mat", device=device, no_half=no_half)
|
|
cfg = get_config(strategy)
|
|
|
|
for _ in range(10):
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"mat_{strategy.capitalize()}_result.png",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
def test_fcf(strategy):
|
|
model = ModelManager(name="fcf", device=device)
|
|
cfg = get_config(strategy)
|
|
|
|
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2)
|
|
|
|
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
)
|
|
@pytest.mark.parametrize("cv2_flag", ["INPAINT_NS", "INPAINT_TELEA"])
|
|
@pytest.mark.parametrize("cv2_radius", [3, 15])
|
|
def test_cv2(strategy, cv2_flag, cv2_radius):
|
|
model = ModelManager(
|
|
name="cv2",
|
|
device=torch.device(device),
|
|
)
|
|
cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius)
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
)
|
|
def test_manga(strategy):
|
|
model = ModelManager(
|
|
name="manga",
|
|
device=torch.device(device),
|
|
)
|
|
cfg = get_config(strategy)
|
|
assert_equal(
|
|
model,
|
|
cfg,
|
|
f"sd_{strategy.capitalize()}.png",
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
)
|