IOPaint/lama_cleaner/server.py
2022-10-09 21:32:13 +08:00

240 lines
6.7 KiB
Python

#!/usr/bin/env python3
import io
import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path
from typing import Union
import cv2
import torch
import numpy as np
from loguru import logger
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from flask import Flask, request, send_file, cli, make_response
# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
cli.show_server_banner = lambda *_: None
from flask_cors import CORS
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
class NoFlaskwebgui(logging.Filter):
def filter(self, record):
return "GET //flaskwebgui-keep-server-alive" not in record.getMessage()
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
app.config["JSON_AS_ASCII"] = False
CORS(app, expose_headers=["Content-Disposition"])
# MAX_BUFFER_SIZE = 50 * 1000 * 1000 # 50 MB
# async_mode 优先级: eventlet/gevent_uwsgi/gevent/threading
# only threading works on macOS
# socketio = SocketIO(app, max_http_buffer_size=MAX_BUFFER_SIZE, async_mode='threading')
model: ModelManager = None
device = None
input_image_path: str = None
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(step: int):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
@app.route("/inpaint", methods=["POST"])
def process():
input = request.files
# RGB
origin_image_bytes = input["image"].read()
image, alpha_channel = load_img(origin_image_bytes)
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
form = request.form
size_limit: Union[int, str] = form.get("sizeLimit", "1080")
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=form["ldmSteps"],
ldm_sampler=form["ldmSampler"],
hd_strategy=form["hdStrategy"],
zits_wireframe=form["zitsWireframe"],
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
prompt=form["prompt"],
use_croper=form["useCroper"],
croper_x=form["croperX"],
croper_y=form["croperY"],
croper_height=form["croperHeight"],
croper_width=form["croperWidth"],
sd_mask_blur=form["sdMaskBlur"],
sd_strength=form["sdStrength"],
sd_steps=form["sdSteps"],
sd_guidance_scale=form["sdGuidanceScale"],
sd_sampler=form["sdSampler"],
sd_seed=form["sdSeed"],
cv2_flag=form["cv2Flag"],
cv2_radius=form['cv2Radius']
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 9999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask, _ = load_img(input["mask"].read(), gray=True)
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
start = time.time()
res_np_img = model(image, mask, config)
logger.info(f"process time: {(time.time() - start) * 1000}ms")
torch.cuda.empty_cache()
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
ext = get_image_ext(origin_image_bytes)
response = make_response(
send_file(
io.BytesIO(numpy_to_bytes(res_np_img, ext)),
mimetype=f"image/{ext}",
)
)
response.headers["X-Seed"] = str(config.sd_seed)
return response
@app.route("/model")
def current_model():
return model.name, 200
@app.route("/model_downloaded/<name>")
def model_downloaded(name):
return str(model.is_downloaded(name)), 200
@app.route("/model", methods=["POST"])
def switch_model():
new_name = request.form.get("name")
if new_name == model.name:
return "Same model", 200
try:
model.switch(new_name)
except NotImplementedError:
return f"{new_name} not implemented", 403
return f"ok, switch to {new_name}", 200
@app.route("/")
def index():
return send_file(os.path.join(BUILD_DIR, "index.html"))
@app.route("/inputimage")
def set_input_photo():
if input_image_path:
with open(input_image_path, "rb") as f:
image_in_bytes = f.read()
return send_file(
input_image_path,
as_attachment=True,
attachment_filename=Path(input_image_path).name,
mimetype=f"image/{get_image_ext(image_in_bytes)}",
)
else:
return "No Input Image"
def main(args):
global model
global device
global input_image_path
device = torch.device(args.device)
input_image_path = args.input
model = ModelManager(
name=args.model,
device=device,
hf_access_token=args.hf_access_token,
sd_disable_nsfw=args.sd_disable_nsfw,
sd_cpu_textencoder=args.sd_cpu_textencoder,
sd_run_local=args.sd_run_local,
callbacks=[diffuser_callback],
)
if args.gui:
app_width, app_height = args.gui_size
from flaskwebgui import FlaskUI
ui = FlaskUI(
app, width=app_width, height=app_height, host=args.host, port=args.port
)
ui.run()
else:
# TODO: socketio
app.run(host=args.host, port=args.port, debug=args.debug)