IOPaint/iopaint/model/anytext/ocr_recog/RNN.py
2024-01-21 12:30:49 +08:00

210 lines
6.5 KiB
Python
Executable File

from torch import nn
import torch
from .RecSVTR import Block
class Swish(nn.Module):
def __int__(self):
super(Swish, self).__int__()
def forward(self,x):
return x*torch.sigmoid(x)
class Im2Im(nn.Module):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
return x
class Im2Seq(nn.Module):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
B, C, H, W = x.shape
# assert H == 1
x = x.reshape(B, C, H * W)
x = x.permute((0, 2, 1))
return x
class EncoderWithRNN(nn.Module):
def __init__(self, in_channels,**kwargs):
super(EncoderWithRNN, self).__init__()
hidden_size = kwargs.get('hidden_size', 256)
self.out_channels = hidden_size * 2
self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True)
def forward(self, x):
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
return x
class SequenceEncoder(nn.Module):
def __init__(self, in_channels, encoder_type='rnn', **kwargs):
super(SequenceEncoder, self).__init__()
self.encoder_reshape = Im2Seq(in_channels)
self.out_channels = self.encoder_reshape.out_channels
self.encoder_type = encoder_type
if encoder_type == 'reshape':
self.only_reshape = True
else:
support_encoder_dict = {
'reshape': Im2Seq,
'rnn': EncoderWithRNN,
'svtr': EncoderWithSVTR
}
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
encoder_type, support_encoder_dict.keys())
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels,**kwargs)
self.out_channels = self.encoder.out_channels
self.only_reshape = False
def forward(self, x):
if self.encoder_type != 'svtr':
x = self.encoder_reshape(x)
if not self.only_reshape:
x = self.encoder(x)
return x
else:
x = self.encoder(x)
x = self.encoder_reshape(x)
return x
class ConvBNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias_attr=False,
groups=1,
act=nn.GELU):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
bias=bias_attr)
self.norm = nn.BatchNorm2d(out_channels)
self.act = Swish()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class EncoderWithSVTR(nn.Module):
def __init__(
self,
in_channels,
dims=64, # XS
depth=2,
hidden_dims=120,
use_guide=False,
num_heads=8,
qkv_bias=True,
mlp_ratio=2.0,
drop_rate=0.1,
attn_drop_rate=0.1,
drop_path=0.,
qk_scale=None):
super(EncoderWithSVTR, self).__init__()
self.depth = depth
self.use_guide = use_guide
self.conv1 = ConvBNLayer(
in_channels, in_channels // 8, padding=1, act='swish')
self.conv2 = ConvBNLayer(
in_channels // 8, hidden_dims, kernel_size=1, act='swish')
self.svtr_block = nn.ModuleList([
Block(
dim=hidden_dims,
num_heads=num_heads,
mixer='Global',
HW=None,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer='swish',
attn_drop=attn_drop_rate,
drop_path=drop_path,
norm_layer='nn.LayerNorm',
epsilon=1e-05,
prenorm=False) for i in range(depth)
])
self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
self.conv3 = ConvBNLayer(
hidden_dims, in_channels, kernel_size=1, act='swish')
# last conv-nxn, the input is concat of input tensor and conv3 output tensor
self.conv4 = ConvBNLayer(
2 * in_channels, in_channels // 8, padding=1, act='swish')
self.conv1x1 = ConvBNLayer(
in_channels // 8, dims, kernel_size=1, act='swish')
self.out_channels = dims
self.apply(self._init_weights)
def _init_weights(self, m):
# weight initialization
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.ConvTranspose2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
# for use guide
if self.use_guide:
z = x.clone()
z.stop_gradient = True
else:
z = x
# for short cut
h = z
# reduce dim
z = self.conv1(z)
z = self.conv2(z)
# SVTR global block
B, C, H, W = z.shape
z = z.flatten(2).permute(0, 2, 1)
for blk in self.svtr_block:
z = blk(z)
z = self.norm(z)
# last stage
z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2)
z = self.conv3(z)
z = torch.cat((h, z), dim=1)
z = self.conv1x1(self.conv4(z))
return z
if __name__=="__main__":
svtrRNN = EncoderWithSVTR(56)
print(svtrRNN)