407 lines
21 KiB
Python
407 lines
21 KiB
Python
import inspect
|
|
from typing import List, Optional, Union, Callable
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import PIL
|
|
from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
|
|
from diffusers.utils import logging, deprecate
|
|
from diffusers.configuration_utils import FrozenDict
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def preprocess_image(image):
|
|
w, h = image.size
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return 2.0 * image - 1.0
|
|
|
|
|
|
def preprocess_mask(mask):
|
|
mask = mask.convert("L")
|
|
w, h = mask.size
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
|
mask = np.array(mask).astype(np.float32) / 255.0
|
|
mask = np.tile(mask, (4, 1, 1))
|
|
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
|
mask = 1 - mask # repaint white, keep black
|
|
mask = torch.from_numpy(mask)
|
|
return mask
|
|
|
|
|
|
class StableDiffusionInpaintPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
logger.info("`StableDiffusionInpaintPipeline` is experimental and will very likely change in the future.")
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if safety_checker is None:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
|
r"""
|
|
Enable sliced attention computation.
|
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
|
|
|
Args:
|
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
|
`attention_head_dim` must be a multiple of `slice_size`.
|
|
"""
|
|
if slice_size == "auto":
|
|
# half the attention head size is usually a good trade-off between
|
|
# speed and memory
|
|
slice_size = self.unet.config.attention_head_dim // 2
|
|
self.unet.set_attention_slice(slice_size)
|
|
|
|
def disable_attention_slicing(self):
|
|
r"""
|
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
|
back to computing attention in one step.
|
|
"""
|
|
# set slice_size = `None` to disable `set_attention_slice`
|
|
self.enable_attention_slicing(None)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
|
strength: float = 0.8,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: Optional[float] = 0.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
init_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
|
process. This is the image whose masked region will be inpainted.
|
|
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be
|
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
|
strength (`float`, *optional*, defaults to 0.8):
|
|
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
|
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
|
in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more
|
|
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
|
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
|
if `guidance_scale` is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
deterministic.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
if isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
# set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# get prompt text embeddings
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
|
|
|
text_encoder_device = self.text_encoder.device
|
|
text_embeddings = self.text_encoder(text_input_ids.to(text_encoder_device))[0].to(self.device)
|
|
|
|
# duplicate text embeddings for each generation per prompt
|
|
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = text_input_ids.shape[-1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(text_encoder_device))[0].to(self.device)
|
|
|
|
# duplicate unconditional embeddings for each generation per prompt
|
|
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size * num_images_per_prompt, dim=0)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
# preprocess image
|
|
if not isinstance(init_image, torch.FloatTensor):
|
|
init_image = preprocess_image(init_image)
|
|
|
|
# encode the init image into latents and scale the latents
|
|
latents_dtype = text_embeddings.dtype
|
|
init_image = init_image.to(device=self.device, dtype=latents_dtype)
|
|
init_latent_dist = self.vae.encode(init_image).latent_dist
|
|
init_latents = init_latent_dist.sample(generator=generator)
|
|
init_latents = 0.18215 * init_latents
|
|
|
|
# Expand init_latents for batch_size and num_images_per_prompt
|
|
init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0)
|
|
init_latents_orig = init_latents
|
|
|
|
# preprocess mask
|
|
if not isinstance(mask_image, torch.FloatTensor):
|
|
mask_image = preprocess_mask(mask_image)
|
|
mask_image = mask_image.to(device=self.device, dtype=latents_dtype)
|
|
mask = torch.cat([mask_image] * batch_size * num_images_per_prompt)
|
|
|
|
# check sizes
|
|
if not mask.shape == init_latents.shape:
|
|
raise ValueError("The mask and init_image should be the same size!")
|
|
|
|
# get the original timestep using init_timestep
|
|
offset = self.scheduler.config.get("steps_offset", 0)
|
|
init_timestep = int(num_inference_steps * strength) + offset
|
|
init_timestep = min(init_timestep, num_inference_steps)
|
|
|
|
timesteps = self.scheduler.timesteps[-init_timestep]
|
|
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
|
|
|
|
# add noise to latents using the timesteps
|
|
noise = torch.randn(init_latents.shape, generator=generator, device=self.device, dtype=latents_dtype)
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
latents = init_latents
|
|
|
|
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
|
|
|
# Some schedulers like PNDM have timesteps as arrays
|
|
# It's more optimized to move all timesteps to correct device beforehand
|
|
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
|
|
|
for i, t in tqdm(enumerate(timesteps)):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
# masking
|
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
|
|
|
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
|
|
|
# call the callback, if provided
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
|
self.device
|
|
)
|
|
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
|
else:
|
|
has_nsfw_concept = None
|
|
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|