119 lines
4.0 KiB
Python
119 lines
4.0 KiB
Python
import cv2
|
|
import os
|
|
import os.path as osp
|
|
import torch
|
|
from torch.hub import download_url_to_file, get_dir
|
|
from urllib.parse import urlparse
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
|
|
def imwrite(img, file_path, params=None, auto_mkdir=True):
|
|
"""Write image to file.
|
|
|
|
Args:
|
|
img (ndarray): Image array to be written.
|
|
file_path (str): Image file path.
|
|
params (None or list): Same as opencv's :func:`imwrite` interface.
|
|
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
|
|
whether to create it automatically.
|
|
|
|
Returns:
|
|
bool: Successful or not.
|
|
"""
|
|
if auto_mkdir:
|
|
dir_name = os.path.abspath(os.path.dirname(file_path))
|
|
os.makedirs(dir_name, exist_ok=True)
|
|
return cv2.imwrite(file_path, img, params)
|
|
|
|
|
|
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
|
"""Numpy array to tensor.
|
|
|
|
Args:
|
|
imgs (list[ndarray] | ndarray): Input images.
|
|
bgr2rgb (bool): Whether to change bgr to rgb.
|
|
float32 (bool): Whether to change to float32.
|
|
|
|
Returns:
|
|
list[tensor] | tensor: Tensor images. If returned results only have
|
|
one element, just return tensor.
|
|
"""
|
|
|
|
def _totensor(img, bgr2rgb, float32):
|
|
if img.shape[2] == 3 and bgr2rgb:
|
|
if img.dtype == 'float64':
|
|
img = img.astype('float32')
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
img = torch.from_numpy(img.transpose(2, 0, 1))
|
|
if float32:
|
|
img = img.float()
|
|
return img
|
|
|
|
if isinstance(imgs, list):
|
|
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
|
else:
|
|
return _totensor(imgs, bgr2rgb, float32)
|
|
|
|
|
|
def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None):
|
|
"""Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
|
|
"""
|
|
if model_dir is None:
|
|
hub_dir = get_dir()
|
|
model_dir = os.path.join(hub_dir, 'checkpoints')
|
|
|
|
if save_dir is None:
|
|
save_dir = os.path.join(ROOT_DIR, model_dir)
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
parts = urlparse(url)
|
|
filename = os.path.basename(parts.path)
|
|
if file_name is not None:
|
|
filename = file_name
|
|
cached_file = os.path.abspath(os.path.join(save_dir, filename))
|
|
if not os.path.exists(cached_file):
|
|
print(f'Downloading: "{url}" to {cached_file}\n')
|
|
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
|
|
return cached_file
|
|
|
|
|
|
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
|
|
"""Scan a directory to find the interested files.
|
|
Args:
|
|
dir_path (str): Path of the directory.
|
|
suffix (str | tuple(str), optional): File suffix that we are
|
|
interested in. Default: None.
|
|
recursive (bool, optional): If set to True, recursively scan the
|
|
directory. Default: False.
|
|
full_path (bool, optional): If set to True, include the dir_path.
|
|
Default: False.
|
|
Returns:
|
|
A generator for all the interested files with relative paths.
|
|
"""
|
|
|
|
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
|
|
raise TypeError('"suffix" must be a string or tuple of strings')
|
|
|
|
root = dir_path
|
|
|
|
def _scandir(dir_path, suffix, recursive):
|
|
for entry in os.scandir(dir_path):
|
|
if not entry.name.startswith('.') and entry.is_file():
|
|
if full_path:
|
|
return_path = entry.path
|
|
else:
|
|
return_path = osp.relpath(entry.path, root)
|
|
|
|
if suffix is None:
|
|
yield return_path
|
|
elif return_path.endswith(suffix):
|
|
yield return_path
|
|
else:
|
|
if recursive:
|
|
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
|
|
else:
|
|
continue
|
|
|
|
return _scandir(dir_path, suffix=suffix, recursive=recursive)
|