Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.
a24df020d3
bug fix : set eval mode during inference + don't store gradients |
||
---|---|---|
assets | ||
lama_cleaner | ||
.gitignore | ||
Dockerfile | ||
LICENSE | ||
main.py | ||
README.md | ||
requirements.txt | ||
setup.py |
Lama-cleaner: Image inpainting tool powered by LaMa
This project is mainly used for selfhosting LaMa model, some interaction improvements may be added later.
- High resolution support
- Multi stroke support. Press and hold the
cmd/ctrl
key to enable multi stroke mode. - Keep image EXIF data
Quick Start
- Install requirements:
pip3 install -r requirements.txt
- Start server:
python3 main.py --device=cuda --port=8080
Development
Fronted
Frontend code are modified from cleanup.pictures, You can experience their great online services here.
- Install dependencies:
cd lama_cleaner/app/ && yarn
- Start development server:
yarn dev
- Build:
yarn build
Docker
Run within a Docker container. Set the CACHE_DIR
to models location path.
Optionally add a -d
option to the docker run
command below to run as a daemon.
Build Docker image
docker build -f Dockerfile -t lamacleaner .
Run Docker (cpu)
docker run -p 8080:8080 -e CACHE_DIR=/app/models -v $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cpu --port=8080
Run Docker (gpu)
docker run --gpus all -p 8080:8080 -e CACHE_DIR=/app/models -v $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cuda --port=8080
Then open http://localhost:8080