167 lines
6.2 KiB
Python
167 lines
6.2 KiB
Python
import PIL.Image
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import ControlNetModel, DiffusionPipeline
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel
|
|
from lama_cleaner.model.helper.controlnet_preprocess import (
|
|
make_canny_control_image,
|
|
make_openpose_control_image,
|
|
make_depth_control_image,
|
|
make_inpaint_control_image,
|
|
)
|
|
from lama_cleaner.model.helper.cpu_text_encoder import CPUTextEncoderWrapper
|
|
from lama_cleaner.model.utils import get_scheduler, handle_from_pretrained_exceptions
|
|
from lama_cleaner.schema import InpaintRequest, ModelType
|
|
|
|
|
|
class ControlNet(DiffusionInpaintModel):
|
|
name = "controlnet"
|
|
pad_mod = 8
|
|
min_size = 512
|
|
|
|
@property
|
|
def lcm_lora_id(self):
|
|
if self.model_info.model_type in [
|
|
ModelType.DIFFUSERS_SD,
|
|
ModelType.DIFFUSERS_SD_INPAINT,
|
|
]:
|
|
return "latent-consistency/lcm-lora-sdv1-5"
|
|
if self.model_info.model_type in [
|
|
ModelType.DIFFUSERS_SDXL,
|
|
ModelType.DIFFUSERS_SDXL_INPAINT,
|
|
]:
|
|
return "latent-consistency/lcm-lora-sdxl"
|
|
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
fp16 = not kwargs.get("no_half", False)
|
|
model_info = kwargs["model_info"]
|
|
controlnet_method = kwargs["controlnet_method"]
|
|
|
|
self.model_info = model_info
|
|
self.controlnet_method = controlnet_method
|
|
|
|
model_kwargs = {}
|
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(
|
|
dict(
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
)
|
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
self.torch_dtype = torch_dtype
|
|
|
|
if model_info.model_type in [
|
|
ModelType.DIFFUSERS_SD,
|
|
ModelType.DIFFUSERS_SD_INPAINT,
|
|
]:
|
|
from diffusers import (
|
|
StableDiffusionControlNetInpaintPipeline as PipeClass,
|
|
)
|
|
elif model_info.model_type in [
|
|
ModelType.DIFFUSERS_SDXL,
|
|
ModelType.DIFFUSERS_SDXL_INPAINT,
|
|
]:
|
|
from diffusers import (
|
|
StableDiffusionXLControlNetInpaintPipeline as PipeClass,
|
|
)
|
|
|
|
controlnet = ControlNetModel.from_pretrained(
|
|
pretrained_model_name_or_path=controlnet_method,
|
|
resume_download=True,
|
|
)
|
|
if model_info.is_single_file_diffusers:
|
|
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
|
model_kwargs["num_in_channels"] = 4
|
|
else:
|
|
model_kwargs["num_in_channels"] = 9
|
|
|
|
self.model = PipeClass.from_single_file(
|
|
model_info.path, controlnet=controlnet, **model_kwargs
|
|
).to(torch_dtype)
|
|
else:
|
|
self.model = handle_from_pretrained_exceptions(
|
|
PipeClass.from_pretrained,
|
|
pretrained_model_name_or_path=model_info.path,
|
|
controlnet=controlnet,
|
|
variant="fp16",
|
|
dtype=torch_dtype,
|
|
**model_kwargs,
|
|
)
|
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
|
logger.info("Enable sequential cpu offload")
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
if kwargs["sd_cpu_textencoder"]:
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
self.model.text_encoder = CPUTextEncoderWrapper(
|
|
self.model.text_encoder, torch_dtype
|
|
)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
def switch_controlnet_method(self, new_method: str):
|
|
self.controlnet_method = new_method
|
|
controlnet = ControlNetModel.from_pretrained(
|
|
new_method, torch_dtype=self.torch_dtype, resume_download=True
|
|
).to(self.model.device)
|
|
self.model.controlnet = controlnet
|
|
|
|
def _get_control_image(self, image, mask):
|
|
if "canny" in self.controlnet_method:
|
|
control_image = make_canny_control_image(image)
|
|
elif "openpose" in self.controlnet_method:
|
|
control_image = make_openpose_control_image(image)
|
|
elif "depth" in self.controlnet_method:
|
|
control_image = make_depth_control_image(image)
|
|
elif "inpaint" in self.controlnet_method:
|
|
control_image = make_inpaint_control_image(image, mask)
|
|
else:
|
|
raise NotImplementedError(f"{self.controlnet_method} not implemented")
|
|
return control_image
|
|
|
|
def forward(self, image, mask, config: InpaintRequest):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
"""
|
|
scheduler_config = self.model.scheduler.config
|
|
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
|
|
self.model.scheduler = scheduler
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
control_image = self._get_control_image(image, mask)
|
|
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
|
image = PIL.Image.fromarray(image)
|
|
|
|
output = self.model(
|
|
image=image,
|
|
mask_image=mask_image,
|
|
control_image=control_image,
|
|
prompt=config.prompt,
|
|
negative_prompt=config.negative_prompt,
|
|
num_inference_steps=config.sd_steps,
|
|
guidance_scale=config.sd_guidance_scale,
|
|
output_type="np",
|
|
callback=self.callback,
|
|
height=img_h,
|
|
width=img_w,
|
|
generator=torch.manual_seed(config.sd_seed),
|
|
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|