104 lines
2.9 KiB
Python
104 lines
2.9 KiB
Python
import hashlib
|
|
import os
|
|
import time
|
|
|
|
from lama_cleaner.plugins.anime_seg import AnimeSeg
|
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import pytest
|
|
import torch.cuda
|
|
|
|
from lama_cleaner.plugins import (
|
|
RemoveBG,
|
|
RealESRGANUpscaler,
|
|
GFPGANPlugin,
|
|
RestoreFormerPlugin,
|
|
InteractiveSeg,
|
|
)
|
|
|
|
current_dir = Path(__file__).parent.absolute().resolve()
|
|
save_dir = current_dir / "result"
|
|
save_dir.mkdir(exist_ok=True, parents=True)
|
|
img_p = current_dir / "bunny.jpeg"
|
|
img_bytes = open(img_p, "rb").read()
|
|
bgr_img = cv2.imread(str(img_p))
|
|
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
def _save(img, name):
|
|
cv2.imwrite(str(save_dir / name), img)
|
|
|
|
|
|
def test_remove_bg():
|
|
model = RemoveBG()
|
|
res = model.forward(bgr_img)
|
|
res = cv2.cvtColor(res, cv2.COLOR_RGBA2BGRA)
|
|
_save(res, "test_remove_bg.png")
|
|
|
|
|
|
def test_anime_seg():
|
|
model = AnimeSeg()
|
|
img = cv2.imread(str(current_dir / "anime_test.png"))
|
|
res = model.forward(img)
|
|
assert len(res.shape) == 3
|
|
assert res.shape[-1] == 4
|
|
_save(res, "test_anime_seg.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_upscale(device):
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
|
|
model = RealESRGANUpscaler("realesr-general-x4v3", device)
|
|
res = model.forward(bgr_img, 2)
|
|
_save(res, f"test_upscale_x2_{device}.png")
|
|
|
|
res = model.forward(bgr_img, 4)
|
|
_save(res, f"test_upscale_x4_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_gfpgan(device):
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
model = GFPGANPlugin(device)
|
|
res = model(rgb_img, None, None)
|
|
_save(res, f"test_gfpgan_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_restoreformer(device):
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
model = RestoreFormerPlugin(device)
|
|
res = model(rgb_img, None, None)
|
|
_save(res, f"test_restoreformer_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_segment_anything(device):
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
return
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
return
|
|
img_md5 = hashlib.md5(img_bytes).hexdigest()
|
|
model = InteractiveSeg("vit_l", device)
|
|
new_mask = model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5)
|
|
|
|
save_name = f"test_segment_anything_{device}.png"
|
|
_save(new_mask, save_name)
|
|
|
|
start = time.time()
|
|
model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5)
|
|
print(f"Time for {save_name}: {time.time() - start:.2f}s")
|