189 lines
7.3 KiB
Python
189 lines
7.3 KiB
Python
import random
|
|
|
|
import PIL.Image
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, \
|
|
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.helper import resize_max_size
|
|
from lama_cleaner.model.base import InpaintModel
|
|
from lama_cleaner.model.utils import torch_gc
|
|
from lama_cleaner.schema import Config, SDSampler
|
|
|
|
|
|
class CPUTextEncoderWrapper:
|
|
def __init__(self, text_encoder, torch_dtype):
|
|
self.config = text_encoder.config
|
|
self.text_encoder = text_encoder.to(torch.device('cpu'), non_blocking=True)
|
|
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
|
|
self.torch_dtype = torch_dtype
|
|
del text_encoder
|
|
torch_gc()
|
|
|
|
def __call__(self, x, **kwargs):
|
|
input_device = x.device
|
|
return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)]
|
|
|
|
|
|
class SD(InpaintModel):
|
|
pad_mod = 8
|
|
min_size = 512
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
|
|
fp16 = not kwargs.get('no_half', False)
|
|
|
|
model_kwargs = {"local_files_only": kwargs.get('local_files_only', kwargs['sd_run_local'])}
|
|
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False):
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(dict(
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False
|
|
))
|
|
|
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
self.model = StableDiffusionInpaintPipeline.from_pretrained(
|
|
self.model_id_or_path,
|
|
revision="fp16" if use_gpu and fp16 else "main",
|
|
torch_dtype=torch_dtype,
|
|
use_auth_token=kwargs["hf_access_token"],
|
|
**model_kwargs
|
|
)
|
|
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
|
|
self.model.enable_attention_slicing()
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
|
|
if kwargs.get('enable_xformers', False):
|
|
self.model.enable_xformers_memory_efficient_attention()
|
|
|
|
if kwargs.get('cpu_offload', False) and use_gpu:
|
|
# TODO: gpu_id
|
|
logger.info("Enable sequential cpu offload")
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
if kwargs['sd_cpu_textencoder']:
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
self.model.text_encoder = CPUTextEncoderWrapper(self.model.text_encoder, torch_dtype)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
def _scaled_pad_forward(self, image, mask, config: Config):
|
|
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
|
origin_size = image.shape[:2]
|
|
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
|
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
|
logger.info(
|
|
f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
|
|
)
|
|
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
|
# only paste masked area result
|
|
inpaint_result = cv2.resize(
|
|
inpaint_result,
|
|
(origin_size[1], origin_size[0]),
|
|
interpolation=cv2.INTER_CUBIC,
|
|
)
|
|
original_pixel_indices = mask < 127
|
|
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
|
return inpaint_result
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
"""
|
|
|
|
scheduler_config = self.model.scheduler.config
|
|
|
|
if config.sd_sampler == SDSampler.ddim:
|
|
scheduler = DDIMScheduler.from_config(scheduler_config)
|
|
elif config.sd_sampler == SDSampler.pndm:
|
|
scheduler = PNDMScheduler.from_config(scheduler_config)
|
|
elif config.sd_sampler == SDSampler.k_lms:
|
|
scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
|
|
elif config.sd_sampler == SDSampler.k_euler:
|
|
scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
|
|
elif config.sd_sampler == SDSampler.k_euler_a:
|
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
|
|
elif config.sd_sampler == SDSampler.dpm_plus_plus:
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
|
|
else:
|
|
raise ValueError(config.sd_sampler)
|
|
|
|
self.model.scheduler = scheduler
|
|
|
|
seed = config.sd_seed
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
if config.sd_mask_blur != 0:
|
|
k = 2 * config.sd_mask_blur + 1
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
output = self.model(
|
|
image=PIL.Image.fromarray(image),
|
|
prompt=config.prompt,
|
|
negative_prompt=config.negative_prompt,
|
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
|
num_inference_steps=config.sd_steps,
|
|
guidance_scale=config.sd_guidance_scale,
|
|
output_type="np.array",
|
|
callback=self.callback,
|
|
height=img_h,
|
|
width=img_w,
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, image, mask, config: Config):
|
|
"""
|
|
images: [H, W, C] RGB, not normalized
|
|
masks: [H, W]
|
|
return: BGR IMAGE
|
|
"""
|
|
# boxes = boxes_from_mask(mask)
|
|
if config.use_croper:
|
|
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
|
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
|
inpaint_result = image[:, :, ::-1]
|
|
inpaint_result[t:b, l:r, :] = crop_image
|
|
else:
|
|
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
|
|
|
return inpaint_result
|
|
|
|
def forward_post_process(self, result, image, mask, config):
|
|
if config.sd_match_histograms:
|
|
result = self._match_histograms(result, image[:, :, ::-1], mask)
|
|
|
|
if config.sd_mask_blur != 0:
|
|
k = 2 * config.sd_mask_blur + 1
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)
|
|
return result, image, mask
|
|
|
|
@staticmethod
|
|
def is_downloaded() -> bool:
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
return True
|
|
|
|
|
|
class SD15(SD):
|
|
model_id_or_path = "runwayml/stable-diffusion-inpainting"
|
|
|
|
|
|
class SD2(SD):
|
|
model_id_or_path = "stabilityai/stable-diffusion-2-inpainting"
|