70af4845af
new file: inpaint/__main__.py new file: inpaint/api.py new file: inpaint/batch_processing.py new file: inpaint/benchmark.py new file: inpaint/cli.py new file: inpaint/const.py new file: inpaint/download.py new file: inpaint/file_manager/__init__.py new file: inpaint/file_manager/file_manager.py new file: inpaint/file_manager/storage_backends.py new file: inpaint/file_manager/utils.py new file: inpaint/helper.py new file: inpaint/installer.py new file: inpaint/model/__init__.py new file: inpaint/model/anytext/__init__.py new file: inpaint/model/anytext/anytext_model.py new file: inpaint/model/anytext/anytext_pipeline.py new file: inpaint/model/anytext/anytext_sd15.yaml new file: inpaint/model/anytext/cldm/__init__.py new file: inpaint/model/anytext/cldm/cldm.py new file: inpaint/model/anytext/cldm/ddim_hacked.py new file: inpaint/model/anytext/cldm/embedding_manager.py new file: inpaint/model/anytext/cldm/hack.py new file: inpaint/model/anytext/cldm/model.py new file: inpaint/model/anytext/cldm/recognizer.py new file: inpaint/model/anytext/ldm/__init__.py new file: inpaint/model/anytext/ldm/models/__init__.py new file: inpaint/model/anytext/ldm/models/autoencoder.py new file: inpaint/model/anytext/ldm/models/diffusion/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/ddim.py new file: inpaint/model/anytext/ldm/models/diffusion/ddpm.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file: inpaint/model/anytext/ldm/models/diffusion/plms.py new file: inpaint/model/anytext/ldm/models/diffusion/sampling_util.py new file: inpaint/model/anytext/ldm/modules/__init__.py new file: inpaint/model/anytext/ldm/modules/attention.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/model.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/util.py new file: inpaint/model/anytext/ldm/modules/distributions/__init__.py new file: inpaint/model/anytext/ldm/modules/distributions/distributions.py new file: inpaint/model/anytext/ldm/modules/ema.py new file: inpaint/model/anytext/ldm/modules/encoders/__init__.py new file: inpaint/model/anytext/ldm/modules/encoders/modules.py new file: inpaint/model/anytext/ldm/util.py new file: inpaint/model/anytext/main.py new file: inpaint/model/anytext/ocr_recog/RNN.py new file: inpaint/model/anytext/ocr_recog/RecCTCHead.py new file: inpaint/model/anytext/ocr_recog/RecModel.py new file: inpaint/model/anytext/ocr_recog/RecMv1_enhance.py new file: inpaint/model/anytext/ocr_recog/RecSVTR.py new file: inpaint/model/anytext/ocr_recog/__init__.py new file: inpaint/model/anytext/ocr_recog/common.py new file: inpaint/model/anytext/ocr_recog/en_dict.txt new file: inpaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file: inpaint/model/anytext/utils.py new file: inpaint/model/base.py new file: inpaint/model/brushnet/__init__.py new file: inpaint/model/brushnet/brushnet.py new file: inpaint/model/brushnet/brushnet_unet_forward.py new file: inpaint/model/brushnet/brushnet_wrapper.py new file: inpaint/model/brushnet/pipeline_brushnet.py new file: inpaint/model/brushnet/unet_2d_blocks.py new file: inpaint/model/controlnet.py new file: inpaint/model/ddim_sampler.py new file: inpaint/model/fcf.py new file: inpaint/model/helper/__init__.py new file: inpaint/model/helper/controlnet_preprocess.py new file: inpaint/model/helper/cpu_text_encoder.py new file: inpaint/model/helper/g_diffuser_bot.py new file: inpaint/model/instruct_pix2pix.py new file: inpaint/model/kandinsky.py new file: inpaint/model/lama.py new file: inpaint/model/ldm.py new file: inpaint/model/manga.py new file: inpaint/model/mat.py new file: inpaint/model/mi_gan.py new file: inpaint/model/opencv2.py new file: inpaint/model/original_sd_configs/__init__.py new file: inpaint/model/original_sd_configs/sd_xl_base.yaml new file: inpaint/model/original_sd_configs/sd_xl_refiner.yaml new file: inpaint/model/original_sd_configs/v1-inference.yaml new file: inpaint/model/original_sd_configs/v2-inference-v.yaml new file: inpaint/model/paint_by_example.py new file: inpaint/model/plms_sampler.py new file: inpaint/model/power_paint/__init__.py new file: inpaint/model/power_paint/pipeline_powerpaint.py new file: inpaint/model/power_paint/power_paint.py new file: inpaint/model/power_paint/power_paint_v2.py new file: inpaint/model/power_paint/powerpaint_tokenizer.py
134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
import torch
|
|
from torch import nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
|
|
|
|
|
class ResidualDenseBlock(nn.Module):
|
|
"""Residual Dense Block.
|
|
|
|
Used in RRDB block in ESRGAN.
|
|
|
|
Args:
|
|
num_feat (int): Channel number of intermediate features.
|
|
num_grow_ch (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
|
|
super(ResidualDenseBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
|
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
|
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
|
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
|
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
# initialization
|
|
default_init_weights(
|
|
[self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x1 = self.lrelu(self.conv1(x))
|
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
# Empirically, we use 0.2 to scale the residual for better performance
|
|
return x5 * 0.2 + x
|
|
|
|
|
|
class RRDB(nn.Module):
|
|
"""Residual in Residual Dense Block.
|
|
|
|
Used in RRDB-Net in ESRGAN.
|
|
|
|
Args:
|
|
num_feat (int): Channel number of intermediate features.
|
|
num_grow_ch (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
|
|
super(RRDB, self).__init__()
|
|
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
|
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
|
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
out = self.rdb1(x)
|
|
out = self.rdb2(out)
|
|
out = self.rdb3(out)
|
|
# Empirically, we use 0.2 to scale the residual for better performance
|
|
return out * 0.2 + x
|
|
|
|
|
|
class RRDBNet(nn.Module):
|
|
"""Networks consisting of Residual in Residual Dense Block, which is used
|
|
in ESRGAN.
|
|
|
|
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
|
|
|
We extend ESRGAN for scale x2 and scale x1.
|
|
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
|
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
|
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
|
|
|
Args:
|
|
num_in_ch (int): Channel number of inputs.
|
|
num_out_ch (int): Channel number of outputs.
|
|
num_feat (int): Channel number of intermediate features.
|
|
Default: 64
|
|
num_block (int): Block number in the trunk network. Defaults: 23
|
|
num_grow_ch (int): Channels for each growth. Default: 32.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_in_ch: int,
|
|
num_out_ch: int,
|
|
scale: int = 4,
|
|
num_feat: int = 64,
|
|
num_block: int = 23,
|
|
num_grow_ch: int = 32,
|
|
) -> None:
|
|
super(RRDBNet, self).__init__()
|
|
self.scale = scale
|
|
if scale == 2:
|
|
num_in_ch = num_in_ch * 4
|
|
elif scale == 1:
|
|
num_in_ch = num_in_ch * 16
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
|
self.body = make_layer(
|
|
RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch
|
|
)
|
|
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
# upsample
|
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
if self.scale == 2:
|
|
feat = pixel_unshuffle(x, scale=2)
|
|
elif self.scale == 1:
|
|
feat = pixel_unshuffle(x, scale=4)
|
|
else:
|
|
feat = x
|
|
feat = self.conv_first(feat)
|
|
body_feat = self.conv_body(self.body(feat))
|
|
feat = feat + body_feat
|
|
# upsample
|
|
feat = self.lrelu(
|
|
self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest"))
|
|
)
|
|
feat = self.lrelu(
|
|
self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest"))
|
|
)
|
|
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
|
return out
|