70af4845af
new file: inpaint/__main__.py new file: inpaint/api.py new file: inpaint/batch_processing.py new file: inpaint/benchmark.py new file: inpaint/cli.py new file: inpaint/const.py new file: inpaint/download.py new file: inpaint/file_manager/__init__.py new file: inpaint/file_manager/file_manager.py new file: inpaint/file_manager/storage_backends.py new file: inpaint/file_manager/utils.py new file: inpaint/helper.py new file: inpaint/installer.py new file: inpaint/model/__init__.py new file: inpaint/model/anytext/__init__.py new file: inpaint/model/anytext/anytext_model.py new file: inpaint/model/anytext/anytext_pipeline.py new file: inpaint/model/anytext/anytext_sd15.yaml new file: inpaint/model/anytext/cldm/__init__.py new file: inpaint/model/anytext/cldm/cldm.py new file: inpaint/model/anytext/cldm/ddim_hacked.py new file: inpaint/model/anytext/cldm/embedding_manager.py new file: inpaint/model/anytext/cldm/hack.py new file: inpaint/model/anytext/cldm/model.py new file: inpaint/model/anytext/cldm/recognizer.py new file: inpaint/model/anytext/ldm/__init__.py new file: inpaint/model/anytext/ldm/models/__init__.py new file: inpaint/model/anytext/ldm/models/autoencoder.py new file: inpaint/model/anytext/ldm/models/diffusion/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/ddim.py new file: inpaint/model/anytext/ldm/models/diffusion/ddpm.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file: inpaint/model/anytext/ldm/models/diffusion/plms.py new file: inpaint/model/anytext/ldm/models/diffusion/sampling_util.py new file: inpaint/model/anytext/ldm/modules/__init__.py new file: inpaint/model/anytext/ldm/modules/attention.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/model.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/util.py new file: inpaint/model/anytext/ldm/modules/distributions/__init__.py new file: inpaint/model/anytext/ldm/modules/distributions/distributions.py new file: inpaint/model/anytext/ldm/modules/ema.py new file: inpaint/model/anytext/ldm/modules/encoders/__init__.py new file: inpaint/model/anytext/ldm/modules/encoders/modules.py new file: inpaint/model/anytext/ldm/util.py new file: inpaint/model/anytext/main.py new file: inpaint/model/anytext/ocr_recog/RNN.py new file: inpaint/model/anytext/ocr_recog/RecCTCHead.py new file: inpaint/model/anytext/ocr_recog/RecModel.py new file: inpaint/model/anytext/ocr_recog/RecMv1_enhance.py new file: inpaint/model/anytext/ocr_recog/RecSVTR.py new file: inpaint/model/anytext/ocr_recog/__init__.py new file: inpaint/model/anytext/ocr_recog/common.py new file: inpaint/model/anytext/ocr_recog/en_dict.txt new file: inpaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file: inpaint/model/anytext/utils.py new file: inpaint/model/base.py new file: inpaint/model/brushnet/__init__.py new file: inpaint/model/brushnet/brushnet.py new file: inpaint/model/brushnet/brushnet_unet_forward.py new file: inpaint/model/brushnet/brushnet_wrapper.py new file: inpaint/model/brushnet/pipeline_brushnet.py new file: inpaint/model/brushnet/unet_2d_blocks.py new file: inpaint/model/controlnet.py new file: inpaint/model/ddim_sampler.py new file: inpaint/model/fcf.py new file: inpaint/model/helper/__init__.py new file: inpaint/model/helper/controlnet_preprocess.py new file: inpaint/model/helper/cpu_text_encoder.py new file: inpaint/model/helper/g_diffuser_bot.py new file: inpaint/model/instruct_pix2pix.py new file: inpaint/model/kandinsky.py new file: inpaint/model/lama.py new file: inpaint/model/ldm.py new file: inpaint/model/manga.py new file: inpaint/model/mat.py new file: inpaint/model/mi_gan.py new file: inpaint/model/opencv2.py new file: inpaint/model/original_sd_configs/__init__.py new file: inpaint/model/original_sd_configs/sd_xl_base.yaml new file: inpaint/model/original_sd_configs/sd_xl_refiner.yaml new file: inpaint/model/original_sd_configs/v1-inference.yaml new file: inpaint/model/original_sd_configs/v2-inference-v.yaml new file: inpaint/model/paint_by_example.py new file: inpaint/model/plms_sampler.py new file: inpaint/model/power_paint/__init__.py new file: inpaint/model/power_paint/pipeline_powerpaint.py new file: inpaint/model/power_paint/power_paint.py new file: inpaint/model/power_paint/power_paint_v2.py new file: inpaint/model/power_paint/powerpaint_tokenizer.py
318 lines
7.9 KiB
Python
318 lines
7.9 KiB
Python
import numpy as np
|
|
from numpy.linalg import inv, lstsq
|
|
from numpy.linalg import matrix_rank as rank
|
|
from numpy.linalg import norm
|
|
|
|
|
|
class MatlabCp2tormException(Exception):
|
|
|
|
def __str__(self):
|
|
return 'In File {}:{}'.format(__file__, super.__str__(self))
|
|
|
|
|
|
def tformfwd(trans, uv):
|
|
"""
|
|
Function:
|
|
----------
|
|
apply affine transform 'trans' to uv
|
|
|
|
Parameters:
|
|
----------
|
|
@trans: 3x3 np.array
|
|
transform matrix
|
|
@uv: Kx2 np.array
|
|
each row is a pair of coordinates (x, y)
|
|
|
|
Returns:
|
|
----------
|
|
@xy: Kx2 np.array
|
|
each row is a pair of transformed coordinates (x, y)
|
|
"""
|
|
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
|
xy = np.dot(uv, trans)
|
|
xy = xy[:, 0:-1]
|
|
return xy
|
|
|
|
|
|
def tforminv(trans, uv):
|
|
"""
|
|
Function:
|
|
----------
|
|
apply the inverse of affine transform 'trans' to uv
|
|
|
|
Parameters:
|
|
----------
|
|
@trans: 3x3 np.array
|
|
transform matrix
|
|
@uv: Kx2 np.array
|
|
each row is a pair of coordinates (x, y)
|
|
|
|
Returns:
|
|
----------
|
|
@xy: Kx2 np.array
|
|
each row is a pair of inverse-transformed coordinates (x, y)
|
|
"""
|
|
Tinv = inv(trans)
|
|
xy = tformfwd(Tinv, uv)
|
|
return xy
|
|
|
|
|
|
def findNonreflectiveSimilarity(uv, xy, options=None):
|
|
options = {'K': 2}
|
|
|
|
K = options['K']
|
|
M = xy.shape[0]
|
|
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
|
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
|
|
|
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
|
|
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
|
|
X = np.vstack((tmp1, tmp2))
|
|
|
|
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
|
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
|
U = np.vstack((u, v))
|
|
|
|
# We know that X * r = U
|
|
if rank(X) >= 2 * K:
|
|
r, _, _, _ = lstsq(X, U, rcond=-1)
|
|
r = np.squeeze(r)
|
|
else:
|
|
raise Exception('cp2tform:twoUniquePointsReq')
|
|
sc = r[0]
|
|
ss = r[1]
|
|
tx = r[2]
|
|
ty = r[3]
|
|
|
|
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
|
|
T = inv(Tinv)
|
|
T[:, 2] = np.array([0, 0, 1])
|
|
|
|
return T, Tinv
|
|
|
|
|
|
def findSimilarity(uv, xy, options=None):
|
|
options = {'K': 2}
|
|
|
|
# uv = np.array(uv)
|
|
# xy = np.array(xy)
|
|
|
|
# Solve for trans1
|
|
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
|
|
|
|
# Solve for trans2
|
|
|
|
# manually reflect the xy data across the Y-axis
|
|
xyR = xy
|
|
xyR[:, 0] = -1 * xyR[:, 0]
|
|
|
|
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
|
|
|
|
# manually reflect the tform to undo the reflection done on xyR
|
|
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
trans2 = np.dot(trans2r, TreflectY)
|
|
|
|
# Figure out if trans1 or trans2 is better
|
|
xy1 = tformfwd(trans1, uv)
|
|
norm1 = norm(xy1 - xy)
|
|
|
|
xy2 = tformfwd(trans2, uv)
|
|
norm2 = norm(xy2 - xy)
|
|
|
|
if norm1 <= norm2:
|
|
return trans1, trans1_inv
|
|
else:
|
|
trans2_inv = inv(trans2)
|
|
return trans2, trans2_inv
|
|
|
|
|
|
def get_similarity_transform(src_pts, dst_pts, reflective=True):
|
|
"""
|
|
Function:
|
|
----------
|
|
Find Similarity Transform Matrix 'trans':
|
|
u = src_pts[:, 0]
|
|
v = src_pts[:, 1]
|
|
x = dst_pts[:, 0]
|
|
y = dst_pts[:, 1]
|
|
[x, y, 1] = [u, v, 1] * trans
|
|
|
|
Parameters:
|
|
----------
|
|
@src_pts: Kx2 np.array
|
|
source points, each row is a pair of coordinates (x, y)
|
|
@dst_pts: Kx2 np.array
|
|
destination points, each row is a pair of transformed
|
|
coordinates (x, y)
|
|
@reflective: True or False
|
|
if True:
|
|
use reflective similarity transform
|
|
else:
|
|
use non-reflective similarity transform
|
|
|
|
Returns:
|
|
----------
|
|
@trans: 3x3 np.array
|
|
transform matrix from uv to xy
|
|
trans_inv: 3x3 np.array
|
|
inverse of trans, transform matrix from xy to uv
|
|
"""
|
|
|
|
if reflective:
|
|
trans, trans_inv = findSimilarity(src_pts, dst_pts)
|
|
else:
|
|
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
|
|
|
|
return trans, trans_inv
|
|
|
|
|
|
def cvt_tform_mat_for_cv2(trans):
|
|
"""
|
|
Function:
|
|
----------
|
|
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
|
|
directly used by cv2.warpAffine():
|
|
u = src_pts[:, 0]
|
|
v = src_pts[:, 1]
|
|
x = dst_pts[:, 0]
|
|
y = dst_pts[:, 1]
|
|
[x, y].T = cv_trans * [u, v, 1].T
|
|
|
|
Parameters:
|
|
----------
|
|
@trans: 3x3 np.array
|
|
transform matrix from uv to xy
|
|
|
|
Returns:
|
|
----------
|
|
@cv2_trans: 2x3 np.array
|
|
transform matrix from src_pts to dst_pts, could be directly used
|
|
for cv2.warpAffine()
|
|
"""
|
|
cv2_trans = trans[:, 0:2].T
|
|
|
|
return cv2_trans
|
|
|
|
|
|
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
|
|
"""
|
|
Function:
|
|
----------
|
|
Find Similarity Transform Matrix 'cv2_trans' which could be
|
|
directly used by cv2.warpAffine():
|
|
u = src_pts[:, 0]
|
|
v = src_pts[:, 1]
|
|
x = dst_pts[:, 0]
|
|
y = dst_pts[:, 1]
|
|
[x, y].T = cv_trans * [u, v, 1].T
|
|
|
|
Parameters:
|
|
----------
|
|
@src_pts: Kx2 np.array
|
|
source points, each row is a pair of coordinates (x, y)
|
|
@dst_pts: Kx2 np.array
|
|
destination points, each row is a pair of transformed
|
|
coordinates (x, y)
|
|
reflective: True or False
|
|
if True:
|
|
use reflective similarity transform
|
|
else:
|
|
use non-reflective similarity transform
|
|
|
|
Returns:
|
|
----------
|
|
@cv2_trans: 2x3 np.array
|
|
transform matrix from src_pts to dst_pts, could be directly used
|
|
for cv2.warpAffine()
|
|
"""
|
|
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
|
|
cv2_trans = cvt_tform_mat_for_cv2(trans)
|
|
|
|
return cv2_trans
|
|
|
|
|
|
if __name__ == '__main__':
|
|
"""
|
|
u = [0, 6, -2]
|
|
v = [0, 3, 5]
|
|
x = [-1, 0, 4]
|
|
y = [-1, -10, 4]
|
|
|
|
# In Matlab, run:
|
|
#
|
|
# uv = [u'; v'];
|
|
# xy = [x'; y'];
|
|
# tform_sim=cp2tform(uv,xy,'similarity');
|
|
#
|
|
# trans = tform_sim.tdata.T
|
|
# ans =
|
|
# -0.0764 -1.6190 0
|
|
# 1.6190 -0.0764 0
|
|
# -3.2156 0.0290 1.0000
|
|
# trans_inv = tform_sim.tdata.Tinv
|
|
# ans =
|
|
#
|
|
# -0.0291 0.6163 0
|
|
# -0.6163 -0.0291 0
|
|
# -0.0756 1.9826 1.0000
|
|
# xy_m=tformfwd(tform_sim, u,v)
|
|
#
|
|
# xy_m =
|
|
#
|
|
# -3.2156 0.0290
|
|
# 1.1833 -9.9143
|
|
# 5.0323 2.8853
|
|
# uv_m=tforminv(tform_sim, x,y)
|
|
#
|
|
# uv_m =
|
|
#
|
|
# 0.5698 1.3953
|
|
# 6.0872 2.2733
|
|
# -2.6570 4.3314
|
|
"""
|
|
u = [0, 6, -2]
|
|
v = [0, 3, 5]
|
|
x = [-1, 0, 4]
|
|
y = [-1, -10, 4]
|
|
|
|
uv = np.array((u, v)).T
|
|
xy = np.array((x, y)).T
|
|
|
|
print('\n--->uv:')
|
|
print(uv)
|
|
print('\n--->xy:')
|
|
print(xy)
|
|
|
|
trans, trans_inv = get_similarity_transform(uv, xy)
|
|
|
|
print('\n--->trans matrix:')
|
|
print(trans)
|
|
|
|
print('\n--->trans_inv matrix:')
|
|
print(trans_inv)
|
|
|
|
print('\n---> apply transform to uv')
|
|
print('\nxy_m = uv_augmented * trans')
|
|
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
|
xy_m = np.dot(uv_aug, trans)
|
|
print(xy_m)
|
|
|
|
print('\nxy_m = tformfwd(trans, uv)')
|
|
xy_m = tformfwd(trans, uv)
|
|
print(xy_m)
|
|
|
|
print('\n---> apply inverse transform to xy')
|
|
print('\nuv_m = xy_augmented * trans_inv')
|
|
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
|
|
uv_m = np.dot(xy_aug, trans_inv)
|
|
print(uv_m)
|
|
|
|
print('\nuv_m = tformfwd(trans_inv, xy)')
|
|
uv_m = tformfwd(trans_inv, xy)
|
|
print(uv_m)
|
|
|
|
uv_m = tforminv(trans, xy)
|
|
print('\nuv_m = tforminv(trans, xy)')
|
|
print(uv_m)
|