233 lines
6.6 KiB
Python
233 lines
6.6 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from .common import Activation
|
|
|
|
|
|
class ConvBNLayer(nn.Module):
|
|
def __init__(self,
|
|
num_channels,
|
|
filter_size,
|
|
num_filters,
|
|
stride,
|
|
padding,
|
|
channels=None,
|
|
num_groups=1,
|
|
act='hard_swish'):
|
|
super(ConvBNLayer, self).__init__()
|
|
self.act = act
|
|
self._conv = nn.Conv2d(
|
|
in_channels=num_channels,
|
|
out_channels=num_filters,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=num_groups,
|
|
bias=False)
|
|
|
|
self._batch_norm = nn.BatchNorm2d(
|
|
num_filters,
|
|
)
|
|
if self.act is not None:
|
|
self._act = Activation(act_type=act, inplace=True)
|
|
|
|
def forward(self, inputs):
|
|
y = self._conv(inputs)
|
|
y = self._batch_norm(y)
|
|
if self.act is not None:
|
|
y = self._act(y)
|
|
return y
|
|
|
|
|
|
class DepthwiseSeparable(nn.Module):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters1,
|
|
num_filters2,
|
|
num_groups,
|
|
stride,
|
|
scale,
|
|
dw_size=3,
|
|
padding=1,
|
|
use_se=False):
|
|
super(DepthwiseSeparable, self).__init__()
|
|
self.use_se = use_se
|
|
self._depthwise_conv = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=int(num_filters1 * scale),
|
|
filter_size=dw_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
num_groups=int(num_groups * scale))
|
|
if use_se:
|
|
self._se = SEModule(int(num_filters1 * scale))
|
|
self._pointwise_conv = ConvBNLayer(
|
|
num_channels=int(num_filters1 * scale),
|
|
filter_size=1,
|
|
num_filters=int(num_filters2 * scale),
|
|
stride=1,
|
|
padding=0)
|
|
|
|
def forward(self, inputs):
|
|
y = self._depthwise_conv(inputs)
|
|
if self.use_se:
|
|
y = self._se(y)
|
|
y = self._pointwise_conv(y)
|
|
return y
|
|
|
|
|
|
class MobileNetV1Enhance(nn.Module):
|
|
def __init__(self,
|
|
in_channels=3,
|
|
scale=0.5,
|
|
last_conv_stride=1,
|
|
last_pool_type='max',
|
|
**kwargs):
|
|
super().__init__()
|
|
self.scale = scale
|
|
self.block_list = []
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=in_channels,
|
|
filter_size=3,
|
|
channels=3,
|
|
num_filters=int(32 * scale),
|
|
stride=2,
|
|
padding=1)
|
|
|
|
conv2_1 = DepthwiseSeparable(
|
|
num_channels=int(32 * scale),
|
|
num_filters1=32,
|
|
num_filters2=64,
|
|
num_groups=32,
|
|
stride=1,
|
|
scale=scale)
|
|
self.block_list.append(conv2_1)
|
|
|
|
conv2_2 = DepthwiseSeparable(
|
|
num_channels=int(64 * scale),
|
|
num_filters1=64,
|
|
num_filters2=128,
|
|
num_groups=64,
|
|
stride=1,
|
|
scale=scale)
|
|
self.block_list.append(conv2_2)
|
|
|
|
conv3_1 = DepthwiseSeparable(
|
|
num_channels=int(128 * scale),
|
|
num_filters1=128,
|
|
num_filters2=128,
|
|
num_groups=128,
|
|
stride=1,
|
|
scale=scale)
|
|
self.block_list.append(conv3_1)
|
|
|
|
conv3_2 = DepthwiseSeparable(
|
|
num_channels=int(128 * scale),
|
|
num_filters1=128,
|
|
num_filters2=256,
|
|
num_groups=128,
|
|
stride=(2, 1),
|
|
scale=scale)
|
|
self.block_list.append(conv3_2)
|
|
|
|
conv4_1 = DepthwiseSeparable(
|
|
num_channels=int(256 * scale),
|
|
num_filters1=256,
|
|
num_filters2=256,
|
|
num_groups=256,
|
|
stride=1,
|
|
scale=scale)
|
|
self.block_list.append(conv4_1)
|
|
|
|
conv4_2 = DepthwiseSeparable(
|
|
num_channels=int(256 * scale),
|
|
num_filters1=256,
|
|
num_filters2=512,
|
|
num_groups=256,
|
|
stride=(2, 1),
|
|
scale=scale)
|
|
self.block_list.append(conv4_2)
|
|
|
|
for _ in range(5):
|
|
conv5 = DepthwiseSeparable(
|
|
num_channels=int(512 * scale),
|
|
num_filters1=512,
|
|
num_filters2=512,
|
|
num_groups=512,
|
|
stride=1,
|
|
dw_size=5,
|
|
padding=2,
|
|
scale=scale,
|
|
use_se=False)
|
|
self.block_list.append(conv5)
|
|
|
|
conv5_6 = DepthwiseSeparable(
|
|
num_channels=int(512 * scale),
|
|
num_filters1=512,
|
|
num_filters2=1024,
|
|
num_groups=512,
|
|
stride=(2, 1),
|
|
dw_size=5,
|
|
padding=2,
|
|
scale=scale,
|
|
use_se=True)
|
|
self.block_list.append(conv5_6)
|
|
|
|
conv6 = DepthwiseSeparable(
|
|
num_channels=int(1024 * scale),
|
|
num_filters1=1024,
|
|
num_filters2=1024,
|
|
num_groups=1024,
|
|
stride=last_conv_stride,
|
|
dw_size=5,
|
|
padding=2,
|
|
use_se=True,
|
|
scale=scale)
|
|
self.block_list.append(conv6)
|
|
|
|
self.block_list = nn.Sequential(*self.block_list)
|
|
if last_pool_type == 'avg':
|
|
self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
|
else:
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
self.out_channels = int(1024 * scale)
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv1(inputs)
|
|
y = self.block_list(y)
|
|
y = self.pool(y)
|
|
return y
|
|
|
|
def hardsigmoid(x):
|
|
return F.relu6(x + 3., inplace=True) / 6.
|
|
|
|
class SEModule(nn.Module):
|
|
def __init__(self, channel, reduction=4):
|
|
super(SEModule, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=channel,
|
|
out_channels=channel // reduction,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=True)
|
|
self.conv2 = nn.Conv2d(
|
|
in_channels=channel // reduction,
|
|
out_channels=channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=True)
|
|
|
|
def forward(self, inputs):
|
|
outputs = self.avg_pool(inputs)
|
|
outputs = self.conv1(outputs)
|
|
outputs = F.relu(outputs)
|
|
outputs = self.conv2(outputs)
|
|
outputs = hardsigmoid(outputs)
|
|
x = torch.mul(inputs, outputs)
|
|
|
|
return x
|