118 lines
3.9 KiB
Python
118 lines
3.9 KiB
Python
import PIL.Image
|
|
import cv2
|
|
import torch
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.const import DIFFUSERS_MODEL_FP16_REVERSION
|
|
from lama_cleaner.model.base import DiffusionInpaintModel
|
|
from lama_cleaner.model.helper.cpu_text_encoder import CPUTextEncoderWrapper
|
|
from lama_cleaner.schema import Config, ModelType
|
|
|
|
|
|
class SD(DiffusionInpaintModel):
|
|
pad_mod = 8
|
|
min_size = 512
|
|
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
|
|
|
|
fp16 = not kwargs.get("no_half", False)
|
|
|
|
model_kwargs = {}
|
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(
|
|
dict(
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
)
|
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
|
|
if self.model_info.is_single_file_diffusers:
|
|
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
|
model_kwargs["num_in_channels"] = 4
|
|
else:
|
|
model_kwargs["num_in_channels"] = 9
|
|
|
|
self.model = StableDiffusionInpaintPipeline.from_single_file(
|
|
self.model_id_or_path, torch_dtype=torch_dtype, **model_kwargs
|
|
)
|
|
else:
|
|
self.model = StableDiffusionInpaintPipeline.from_pretrained(
|
|
self.model_id_or_path,
|
|
revision="fp16"
|
|
if self.model_id_or_path in DIFFUSERS_MODEL_FP16_REVERSION
|
|
else "main",
|
|
torch_dtype=torch_dtype,
|
|
**model_kwargs,
|
|
)
|
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
|
# TODO: gpu_id
|
|
logger.info("Enable sequential cpu offload")
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
if kwargs["sd_cpu_textencoder"]:
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
self.model.text_encoder = CPUTextEncoderWrapper(
|
|
self.model.text_encoder, torch_dtype
|
|
)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
"""
|
|
self.set_scheduler(config)
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
output = self.model(
|
|
image=PIL.Image.fromarray(image),
|
|
prompt=config.prompt,
|
|
negative_prompt=config.negative_prompt,
|
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
|
num_inference_steps=config.sd_steps,
|
|
strength=config.sd_strength,
|
|
guidance_scale=config.sd_guidance_scale,
|
|
output_type="np",
|
|
callback=self.callback,
|
|
height=img_h,
|
|
width=img_w,
|
|
generator=torch.manual_seed(config.sd_seed),
|
|
callback_steps=1,
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|
|
|
|
|
|
class SD15(SD):
|
|
name = "sd1.5"
|
|
model_id_or_path = "runwayml/stable-diffusion-inpainting"
|
|
|
|
|
|
class Anything4(SD):
|
|
name = "anything4"
|
|
model_id_or_path = "Sanster/anything-4.0-inpainting"
|
|
|
|
|
|
class RealisticVision14(SD):
|
|
name = "realisticVision1.4"
|
|
model_id_or_path = "Sanster/Realistic_Vision_V1.4-inpainting"
|
|
|
|
|
|
class SD2(SD):
|
|
name = "sd2"
|
|
model_id_or_path = "stabilityai/stable-diffusion-2-inpainting"
|