199 lines
6.8 KiB
Python
199 lines
6.8 KiB
Python
import gc
|
|
|
|
import PIL.Image
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
)
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel
|
|
from lama_cleaner.model.utils import torch_gc, get_scheduler
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
class CPUTextEncoderWrapper:
|
|
def __init__(self, text_encoder, torch_dtype):
|
|
self.config = text_encoder.config
|
|
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
|
|
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
|
|
self.torch_dtype = torch_dtype
|
|
del text_encoder
|
|
torch_gc()
|
|
|
|
def __call__(self, x, **kwargs):
|
|
input_device = x.device
|
|
return [
|
|
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
|
|
.to(input_device)
|
|
.to(self.torch_dtype)
|
|
]
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.torch_dtype
|
|
|
|
|
|
NAMES_MAP = {
|
|
"sd1.5": "runwayml/stable-diffusion-inpainting",
|
|
"anything4": "Sanster/anything-4.0-inpainting",
|
|
"realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting",
|
|
}
|
|
|
|
|
|
def load_from_local_model(local_model_path, torch_dtype, controlnet):
|
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
|
load_pipeline_from_original_stable_diffusion_ckpt,
|
|
)
|
|
from .pipeline import StableDiffusionControlNetInpaintPipeline
|
|
|
|
logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline")
|
|
|
|
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
local_model_path,
|
|
num_in_channels=9,
|
|
from_safetensors=local_model_path.endswith("safetensors"),
|
|
device="cpu",
|
|
)
|
|
|
|
inpaint_pipe = StableDiffusionControlNetInpaintPipeline(
|
|
vae=pipe.vae,
|
|
text_encoder=pipe.text_encoder,
|
|
tokenizer=pipe.tokenizer,
|
|
unet=pipe.unet,
|
|
controlnet=controlnet,
|
|
scheduler=pipe.scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
|
|
del pipe
|
|
gc.collect()
|
|
return inpaint_pipe.to(torch_dtype)
|
|
|
|
|
|
class ControlNet(DiffusionInpaintModel):
|
|
name = "controlnet"
|
|
pad_mod = 8
|
|
min_size = 512
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
from .pipeline import StableDiffusionControlNetInpaintPipeline
|
|
|
|
model_id = NAMES_MAP[kwargs["name"]]
|
|
fp16 = not kwargs.get("no_half", False)
|
|
|
|
model_kwargs = {
|
|
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
|
|
}
|
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(
|
|
dict(
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
)
|
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
|
|
controlnet = ControlNetModel.from_pretrained(
|
|
f"lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype
|
|
)
|
|
if kwargs.get("sd_local_model_path", None):
|
|
self.model = load_from_local_model(
|
|
kwargs["sd_local_model_path"],
|
|
torch_dtype=torch_dtype,
|
|
controlnet=controlnet,
|
|
)
|
|
else:
|
|
self.model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
model_id,
|
|
controlnet=controlnet,
|
|
revision="fp16" if use_gpu and fp16 else "main",
|
|
torch_dtype=torch_dtype,
|
|
**model_kwargs,
|
|
)
|
|
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
|
|
self.model.enable_attention_slicing()
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
|
|
if kwargs.get("enable_xformers", False):
|
|
self.model.enable_xformers_memory_efficient_attention()
|
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
|
logger.info("Enable sequential cpu offload")
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
if kwargs["sd_cpu_textencoder"]:
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
self.model.text_encoder = CPUTextEncoderWrapper(
|
|
self.model.text_encoder, torch_dtype
|
|
)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
"""
|
|
|
|
scheduler_config = self.model.scheduler.config
|
|
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
|
|
self.model.scheduler = scheduler
|
|
|
|
if config.sd_mask_blur != 0:
|
|
k = 2 * config.sd_mask_blur + 1
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
canny_image = cv2.Canny(image, 100, 200)
|
|
canny_image = canny_image[:, :, None]
|
|
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
|
canny_image = PIL.Image.fromarray(canny_image)
|
|
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
|
image = PIL.Image.fromarray(image)
|
|
|
|
output = self.model(
|
|
image=image,
|
|
control_image=canny_image,
|
|
prompt=config.prompt,
|
|
negative_prompt=config.negative_prompt,
|
|
mask_image=mask_image,
|
|
num_inference_steps=config.sd_steps,
|
|
guidance_scale=config.sd_guidance_scale,
|
|
output_type="np.array",
|
|
callback=self.callback,
|
|
height=img_h,
|
|
width=img_w,
|
|
generator=torch.manual_seed(config.sd_seed),
|
|
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|
|
|
|
def forward_post_process(self, result, image, mask, config):
|
|
if config.sd_match_histograms:
|
|
result = self._match_histograms(result, image[:, :, ::-1], mask)
|
|
|
|
if config.sd_mask_blur != 0:
|
|
k = 2 * config.sd_mask_blur + 1
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)
|
|
return result, image, mask
|
|
|
|
@staticmethod
|
|
def is_downloaded() -> bool:
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
return True
|