Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.
Go to file
2021-12-12 15:10:43 +08:00
assets add example gif 2021-12-03 22:35:47 +08:00
lama_cleaner build app 2021-12-12 14:57:10 +08:00
.gitignore init 2021-11-15 22:21:01 +08:00
Dockerfile Added Dockerfile 2021-11-15 20:11:46 +01:00
LICENSE init 2021-11-15 22:21:01 +08:00
main.py add LAMA_MODEL env for loading other lama model 2021-12-05 21:32:18 +08:00
README.md update readme 2021-12-12 14:54:37 +08:00
requirements.txt init 2021-11-15 22:21:01 +08:00
setup.py init 2021-11-15 22:21:01 +08:00

Lama-cleaner: Image inpainting tool powered by LaMa

This project is mainly used for selfhosting LaMa model, some interaction improvements may be added later.

example

  • High resolution support
  • Multi stroke support. Press and hold the cmd/ctrl key to enable multi stroke mode.
  • Keep image EXIF data

Quick Start

  • Install requirements: pip3 install -r requirements.txt
  • Start server: python3 main.py --device=cuda --port=8080

Development

Fronted

Frontend code are modified from cleanup.pictures, You can experience their great online services here.

  • Install dependencies:cd lama_cleaner/app/ && yarn
  • Start development server: yarn dev
  • Build: yarn build

Docker

Run within a Docker container. Set the CACHE_DIR to models location path. Optionally add a -d option to the docker run command below to run as a daemon.

Build Docker image

docker build -f Dockerfile -t lamacleaner .

Run Docker (cpu)

docker run -p 8080:8080 -e CACHE_DIR=/app/models -v  $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cpu --port=8080

Run Docker (gpu)

docker run --gpus all -p 8080:8080 -e CACHE_DIR=/app/models -v $(pwd)/models:/app/models -v $(pwd):/app --rm lamacleaner python3 main.py --device=cuda --port=8080

Then open http://localhost:8080