210 lines
6.9 KiB
Python
210 lines
6.9 KiB
Python
import random
|
|
|
|
import PIL.Image
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler
|
|
from loguru import logger
|
|
|
|
from lama_cleaner.model.base import InpaintModel
|
|
from lama_cleaner.schema import Config, SDSampler
|
|
|
|
|
|
#
|
|
#
|
|
# def preprocess_image(image):
|
|
# w, h = image.size
|
|
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
# image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
# image = np.array(image).astype(np.float32) / 255.0
|
|
# image = image[None].transpose(0, 3, 1, 2)
|
|
# image = torch.from_numpy(image)
|
|
# # [-1, 1]
|
|
# return 2.0 * image - 1.0
|
|
#
|
|
#
|
|
# def preprocess_mask(mask):
|
|
# mask = mask.convert("L")
|
|
# w, h = mask.size
|
|
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
# mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
|
# mask = np.array(mask).astype(np.float32) / 255.0
|
|
# mask = np.tile(mask, (4, 1, 1))
|
|
# mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
|
# mask = 1 - mask # repaint white, keep black
|
|
# mask = torch.from_numpy(mask)
|
|
# return mask
|
|
|
|
class CPUTextEncoderWrapper:
|
|
def __init__(self, text_encoder, torch_dtype):
|
|
self.text_encoder = text_encoder.to(torch.device('cpu'), non_blocking=True)
|
|
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
|
|
self.torch_dtype = torch_dtype
|
|
|
|
def __call__(self, x):
|
|
input_device = x.device
|
|
return [self.text_encoder(x.to(self.text_encoder.device))[0].to(input_device).to(self.torch_dtype)]
|
|
|
|
|
|
class SD(InpaintModel):
|
|
pad_mod = 8
|
|
min_size = 512
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
|
|
|
|
model_kwargs = {"local_files_only": kwargs['sd_run_local']}
|
|
if kwargs['sd_disable_nsfw']:
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
model_kwargs.update(dict(
|
|
safety_checker=None,
|
|
))
|
|
|
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
|
|
torch_dtype = torch.float16 if use_gpu else torch.float32
|
|
self.model = StableDiffusionInpaintPipeline.from_pretrained(
|
|
self.model_id_or_path,
|
|
revision="fp16" if use_gpu else "main",
|
|
torch_dtype=torch_dtype,
|
|
use_auth_token=kwargs["hf_access_token"],
|
|
**model_kwargs
|
|
)
|
|
# https://huggingface.co/docs/diffusers/v0.3.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
|
|
self.model.enable_attention_slicing()
|
|
self.model = self.model.to(device)
|
|
|
|
if kwargs['sd_cpu_textencoder']:
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
self.model.text_encoder = CPUTextEncoderWrapper(self.model.text_encoder, torch_dtype)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
"""Input image and output image have same size
|
|
image: [H, W, C] RGB
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
return: BGR IMAGE
|
|
"""
|
|
|
|
# image = norm_img(image) # [0, 1]
|
|
# image = image * 2 - 1 # [0, 1] -> [-1, 1]
|
|
|
|
# resize to latent feature map size
|
|
# h, w = mask.shape[:2]
|
|
# mask = cv2.resize(mask, (h // 8, w // 8), interpolation=cv2.INTER_AREA)
|
|
# mask = norm_img(mask)
|
|
#
|
|
# image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
|
# mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
|
|
|
if config.sd_sampler == SDSampler.ddim:
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
elif config.sd_sampler == SDSampler.pndm:
|
|
PNDM_kwargs = {
|
|
"beta_schedule": "scaled_linear",
|
|
"beta_start": 0.00085,
|
|
"beta_end": 0.012,
|
|
"num_train_timesteps": 1000,
|
|
"skip_prk_steps": True,
|
|
}
|
|
scheduler = PNDMScheduler(**PNDM_kwargs)
|
|
elif config.sd_sampler == SDSampler.k_lms:
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
else:
|
|
raise ValueError(config.sd_sampler)
|
|
|
|
self.model.scheduler = scheduler
|
|
|
|
seed = config.sd_seed
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
if config.sd_mask_blur != 0:
|
|
k = 2 * config.sd_mask_blur + 1
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
|
|
|
|
_kwargs = {
|
|
self.image_key: PIL.Image.fromarray(image),
|
|
}
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
output = self.model(
|
|
prompt=config.prompt,
|
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
|
strength=config.sd_strength,
|
|
num_inference_steps=config.sd_steps,
|
|
guidance_scale=config.sd_guidance_scale,
|
|
output_type="np.array",
|
|
callback=self.callback,
|
|
height=img_h,
|
|
width=img_w,
|
|
**_kwargs
|
|
).images[0]
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
return output
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, image, mask, config: Config):
|
|
"""
|
|
images: [H, W, C] RGB, not normalized
|
|
masks: [H, W]
|
|
return: BGR IMAGE
|
|
"""
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
# boxes = boxes_from_mask(mask)
|
|
if config.use_croper:
|
|
logger.info("use croper")
|
|
l, t, w, h = (
|
|
config.croper_x,
|
|
config.croper_y,
|
|
config.croper_width,
|
|
config.croper_height,
|
|
)
|
|
r = l + w
|
|
b = t + h
|
|
|
|
l = max(l, 0)
|
|
r = min(r, img_w)
|
|
t = max(t, 0)
|
|
b = min(b, img_h)
|
|
|
|
crop_img = image[t:b, l:r, :]
|
|
crop_mask = mask[t:b, l:r]
|
|
|
|
crop_image = self._pad_forward(crop_img, crop_mask, config)
|
|
|
|
inpaint_result = image[:, :, ::-1]
|
|
inpaint_result[t:b, l:r, :] = crop_image
|
|
else:
|
|
inpaint_result = self._pad_forward(image, mask, config)
|
|
|
|
return inpaint_result
|
|
|
|
@staticmethod
|
|
def is_downloaded() -> bool:
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
return True
|
|
|
|
|
|
class SD14(SD):
|
|
model_id_or_path = "CompVis/stable-diffusion-v1-4"
|
|
image_key = "init_image"
|
|
|
|
|
|
class SD15(SD):
|
|
model_id_or_path = "runwayml/stable-diffusion-inpainting"
|
|
image_key = "image"
|