70af4845af
new file: inpaint/__main__.py new file: inpaint/api.py new file: inpaint/batch_processing.py new file: inpaint/benchmark.py new file: inpaint/cli.py new file: inpaint/const.py new file: inpaint/download.py new file: inpaint/file_manager/__init__.py new file: inpaint/file_manager/file_manager.py new file: inpaint/file_manager/storage_backends.py new file: inpaint/file_manager/utils.py new file: inpaint/helper.py new file: inpaint/installer.py new file: inpaint/model/__init__.py new file: inpaint/model/anytext/__init__.py new file: inpaint/model/anytext/anytext_model.py new file: inpaint/model/anytext/anytext_pipeline.py new file: inpaint/model/anytext/anytext_sd15.yaml new file: inpaint/model/anytext/cldm/__init__.py new file: inpaint/model/anytext/cldm/cldm.py new file: inpaint/model/anytext/cldm/ddim_hacked.py new file: inpaint/model/anytext/cldm/embedding_manager.py new file: inpaint/model/anytext/cldm/hack.py new file: inpaint/model/anytext/cldm/model.py new file: inpaint/model/anytext/cldm/recognizer.py new file: inpaint/model/anytext/ldm/__init__.py new file: inpaint/model/anytext/ldm/models/__init__.py new file: inpaint/model/anytext/ldm/models/autoencoder.py new file: inpaint/model/anytext/ldm/models/diffusion/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/ddim.py new file: inpaint/model/anytext/ldm/models/diffusion/ddpm.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file: inpaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file: inpaint/model/anytext/ldm/models/diffusion/plms.py new file: inpaint/model/anytext/ldm/models/diffusion/sampling_util.py new file: inpaint/model/anytext/ldm/modules/__init__.py new file: inpaint/model/anytext/ldm/modules/attention.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/model.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file: inpaint/model/anytext/ldm/modules/diffusionmodules/util.py new file: inpaint/model/anytext/ldm/modules/distributions/__init__.py new file: inpaint/model/anytext/ldm/modules/distributions/distributions.py new file: inpaint/model/anytext/ldm/modules/ema.py new file: inpaint/model/anytext/ldm/modules/encoders/__init__.py new file: inpaint/model/anytext/ldm/modules/encoders/modules.py new file: inpaint/model/anytext/ldm/util.py new file: inpaint/model/anytext/main.py new file: inpaint/model/anytext/ocr_recog/RNN.py new file: inpaint/model/anytext/ocr_recog/RecCTCHead.py new file: inpaint/model/anytext/ocr_recog/RecModel.py new file: inpaint/model/anytext/ocr_recog/RecMv1_enhance.py new file: inpaint/model/anytext/ocr_recog/RecSVTR.py new file: inpaint/model/anytext/ocr_recog/__init__.py new file: inpaint/model/anytext/ocr_recog/common.py new file: inpaint/model/anytext/ocr_recog/en_dict.txt new file: inpaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file: inpaint/model/anytext/utils.py new file: inpaint/model/base.py new file: inpaint/model/brushnet/__init__.py new file: inpaint/model/brushnet/brushnet.py new file: inpaint/model/brushnet/brushnet_unet_forward.py new file: inpaint/model/brushnet/brushnet_wrapper.py new file: inpaint/model/brushnet/pipeline_brushnet.py new file: inpaint/model/brushnet/unet_2d_blocks.py new file: inpaint/model/controlnet.py new file: inpaint/model/ddim_sampler.py new file: inpaint/model/fcf.py new file: inpaint/model/helper/__init__.py new file: inpaint/model/helper/controlnet_preprocess.py new file: inpaint/model/helper/cpu_text_encoder.py new file: inpaint/model/helper/g_diffuser_bot.py new file: inpaint/model/instruct_pix2pix.py new file: inpaint/model/kandinsky.py new file: inpaint/model/lama.py new file: inpaint/model/ldm.py new file: inpaint/model/manga.py new file: inpaint/model/mat.py new file: inpaint/model/mi_gan.py new file: inpaint/model/opencv2.py new file: inpaint/model/original_sd_configs/__init__.py new file: inpaint/model/original_sd_configs/sd_xl_base.yaml new file: inpaint/model/original_sd_configs/sd_xl_refiner.yaml new file: inpaint/model/original_sd_configs/v1-inference.yaml new file: inpaint/model/original_sd_configs/v2-inference-v.yaml new file: inpaint/model/paint_by_example.py new file: inpaint/model/plms_sampler.py new file: inpaint/model/power_paint/__init__.py new file: inpaint/model/power_paint/pipeline_powerpaint.py new file: inpaint/model/power_paint/power_paint.py new file: inpaint/model/power_paint/power_paint_v2.py new file: inpaint/model/power_paint/powerpaint_tokenizer.py
209 lines
8.5 KiB
Python
209 lines
8.5 KiB
Python
import cv2
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
|
|
left, top, right, bot = bbox
|
|
width = right - left
|
|
height = bot - top
|
|
|
|
if preserve_aspect:
|
|
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
|
|
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
|
|
else:
|
|
width_increase = height_increase = increase_area
|
|
left = int(left - width_increase * width)
|
|
top = int(top - height_increase * height)
|
|
right = int(right + width_increase * width)
|
|
bot = int(bot + height_increase * height)
|
|
return (left, top, right, bot)
|
|
|
|
|
|
def get_valid_bboxes(bboxes, h, w):
|
|
left = max(bboxes[0], 0)
|
|
top = max(bboxes[1], 0)
|
|
right = min(bboxes[2], w)
|
|
bottom = min(bboxes[3], h)
|
|
return (left, top, right, bottom)
|
|
|
|
|
|
def align_crop_face_landmarks(img,
|
|
landmarks,
|
|
output_size,
|
|
transform_size=None,
|
|
enable_padding=True,
|
|
return_inverse_affine=False,
|
|
shrink_ratio=(1, 1)):
|
|
"""Align and crop face with landmarks.
|
|
|
|
The output_size and transform_size are based on width. The height is
|
|
adjusted based on shrink_ratio_h/shring_ration_w.
|
|
|
|
Modified from:
|
|
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
|
|
|
|
Args:
|
|
img (Numpy array): Input image.
|
|
landmarks (Numpy array): 5 or 68 or 98 landmarks.
|
|
output_size (int): Output face size.
|
|
transform_size (ing): Transform size. Usually the four time of
|
|
output_size.
|
|
enable_padding (float): Default: True.
|
|
shrink_ratio (float | tuple[float] | list[float]): Shring the whole
|
|
face for height and width (crop larger area). Default: (1, 1).
|
|
|
|
Returns:
|
|
(Numpy array): Cropped face.
|
|
"""
|
|
lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
|
|
|
|
if isinstance(shrink_ratio, (float, int)):
|
|
shrink_ratio = (shrink_ratio, shrink_ratio)
|
|
if transform_size is None:
|
|
transform_size = output_size * 4
|
|
|
|
# Parse landmarks
|
|
lm = np.array(landmarks)
|
|
if lm.shape[0] == 5 and lm_type == 'retinaface_5':
|
|
eye_left = lm[0]
|
|
eye_right = lm[1]
|
|
mouth_avg = (lm[3] + lm[4]) * 0.5
|
|
elif lm.shape[0] == 5 and lm_type == 'dlib_5':
|
|
lm_eye_left = lm[2:4]
|
|
lm_eye_right = lm[0:2]
|
|
eye_left = np.mean(lm_eye_left, axis=0)
|
|
eye_right = np.mean(lm_eye_right, axis=0)
|
|
mouth_avg = lm[4]
|
|
elif lm.shape[0] == 68:
|
|
lm_eye_left = lm[36:42]
|
|
lm_eye_right = lm[42:48]
|
|
eye_left = np.mean(lm_eye_left, axis=0)
|
|
eye_right = np.mean(lm_eye_right, axis=0)
|
|
mouth_avg = (lm[48] + lm[54]) * 0.5
|
|
elif lm.shape[0] == 98:
|
|
lm_eye_left = lm[60:68]
|
|
lm_eye_right = lm[68:76]
|
|
eye_left = np.mean(lm_eye_left, axis=0)
|
|
eye_right = np.mean(lm_eye_right, axis=0)
|
|
mouth_avg = (lm[76] + lm[82]) * 0.5
|
|
|
|
eye_avg = (eye_left + eye_right) * 0.5
|
|
eye_to_eye = eye_right - eye_left
|
|
eye_to_mouth = mouth_avg - eye_avg
|
|
|
|
# Get the oriented crop rectangle
|
|
# x: half width of the oriented crop rectangle
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
|
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
|
|
# norm with the hypotenuse: get the direction
|
|
x /= np.hypot(*x) # get the hypotenuse of a right triangle
|
|
rect_scale = 1 # TODO: you can edit it to get larger rect
|
|
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
|
|
# y: half height of the oriented crop rectangle
|
|
y = np.flipud(x) * [-1, 1]
|
|
|
|
x *= shrink_ratio[1] # width
|
|
y *= shrink_ratio[0] # height
|
|
|
|
# c: center
|
|
c = eye_avg + eye_to_mouth * 0.1
|
|
# quad: (left_top, left_bottom, right_bottom, right_top)
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
|
# qsize: side length of the square
|
|
qsize = np.hypot(*x) * 2
|
|
|
|
quad_ori = np.copy(quad)
|
|
# Shrink, for large face
|
|
# TODO: do we really need shrink
|
|
shrink = int(np.floor(qsize / output_size * 0.5))
|
|
if shrink > 1:
|
|
h, w = img.shape[0:2]
|
|
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
|
|
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
|
|
quad /= shrink
|
|
qsize /= shrink
|
|
|
|
# Crop
|
|
h, w = img.shape[0:2]
|
|
border = max(int(np.rint(qsize * 0.1)), 3)
|
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
|
|
if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
|
|
img = img[crop[1]:crop[3], crop[0]:crop[2], :]
|
|
quad -= crop[0:2]
|
|
|
|
# Pad
|
|
# pad: (width_left, height_top, width_right, height_bottom)
|
|
h, w = img.shape[0:2]
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
|
|
if enable_padding and max(pad) > border - 4:
|
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
|
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
|
h, w = img.shape[0:2]
|
|
y, x, _ = np.ogrid[:h, :w, :1]
|
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
|
|
np.float32(w - 1 - x) / pad[2]),
|
|
1.0 - np.minimum(np.float32(y) / pad[1],
|
|
np.float32(h - 1 - y) / pad[3]))
|
|
blur = int(qsize * 0.02)
|
|
if blur % 2 == 0:
|
|
blur += 1
|
|
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
|
|
|
|
img = img.astype('float32')
|
|
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
|
img = np.clip(img, 0, 255) # float32, [0, 255]
|
|
quad += pad[:2]
|
|
|
|
# Transform use cv2
|
|
h_ratio = shrink_ratio[0] / shrink_ratio[1]
|
|
dst_h, dst_w = int(transform_size * h_ratio), transform_size
|
|
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
|
|
# use cv2.LMEDS method for the equivalence to skimage transform
|
|
# ref: https://blog.csdn.net/yichxi/article/details/115827338
|
|
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
|
|
cropped_face = cv2.warpAffine(
|
|
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
|
|
|
|
if output_size < transform_size:
|
|
cropped_face = cv2.resize(
|
|
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
|
|
|
|
if return_inverse_affine:
|
|
dst_h, dst_w = int(output_size * h_ratio), output_size
|
|
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
|
|
# use cv2.LMEDS method for the equivalence to skimage transform
|
|
# ref: https://blog.csdn.net/yichxi/article/details/115827338
|
|
affine_matrix = cv2.estimateAffinePartial2D(
|
|
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
|
|
inverse_affine = cv2.invertAffineTransform(affine_matrix)
|
|
else:
|
|
inverse_affine = None
|
|
return cropped_face, inverse_affine
|
|
|
|
|
|
def paste_face_back(img, face, inverse_affine):
|
|
h, w = img.shape[0:2]
|
|
face_h, face_w = face.shape[0:2]
|
|
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
|
|
mask = np.ones((face_h, face_w, 3), dtype=np.float32)
|
|
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
|
|
# remove the black borders
|
|
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
|
|
inv_restored_remove_border = inv_mask_erosion * inv_restored
|
|
total_face_area = np.sum(inv_mask_erosion) // 3
|
|
# compute the fusion edge based on the area of face
|
|
w_edge = int(total_face_area**0.5) // 20
|
|
erosion_radius = w_edge * 2
|
|
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
|
|
blur_size = w_edge * 2
|
|
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
|
|
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
|
|
# float32, [0, 255]
|
|
return img
|