121 lines
3.5 KiB
Python
121 lines
3.5 KiB
Python
import hashlib
|
|
import os
|
|
import time
|
|
from PIL import Image
|
|
|
|
from lama_cleaner.helper import encode_pil_to_base64, gen_frontend_mask
|
|
from lama_cleaner.plugins.anime_seg import AnimeSeg
|
|
from lama_cleaner.schema import RunPluginRequest
|
|
from lama_cleaner.tests.utils import check_device, current_dir, save_dir
|
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
|
|
import cv2
|
|
import pytest
|
|
|
|
from lama_cleaner.plugins import (
|
|
RemoveBG,
|
|
RealESRGANUpscaler,
|
|
GFPGANPlugin,
|
|
RestoreFormerPlugin,
|
|
InteractiveSeg,
|
|
)
|
|
|
|
img_p = current_dir / "bunny.jpeg"
|
|
img_bytes = open(img_p, "rb").read()
|
|
bgr_img = cv2.imread(str(img_p))
|
|
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
|
rgb_img_base64 = encode_pil_to_base64(Image.fromarray(rgb_img), 100, {})
|
|
bgr_img_base64 = encode_pil_to_base64(Image.fromarray(bgr_img), 100, {})
|
|
|
|
|
|
def _save(img, name):
|
|
cv2.imwrite(str(save_dir / name), img)
|
|
|
|
|
|
def test_remove_bg():
|
|
model = RemoveBG()
|
|
rgba_np_img = model.gen_image(
|
|
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
|
|
)
|
|
res = cv2.cvtColor(rgba_np_img, cv2.COLOR_RGBA2BGRA)
|
|
_save(res, "test_remove_bg.png")
|
|
|
|
bgr_np_img = model.gen_mask(
|
|
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
|
|
)
|
|
|
|
res_mask = gen_frontend_mask(bgr_np_img)
|
|
_save(res_mask, "test_remove_bg_frontend_mask.png")
|
|
|
|
assert len(bgr_np_img.shape) == 2
|
|
_save(bgr_np_img, "test_remove_bg_mask.jpeg")
|
|
|
|
|
|
def test_anime_seg():
|
|
model = AnimeSeg()
|
|
img = cv2.imread(str(current_dir / "anime_test.png"))
|
|
img_base64 = encode_pil_to_base64(Image.fromarray(img), 100, {})
|
|
res = model.gen_image(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
|
|
assert len(res.shape) == 3
|
|
assert res.shape[-1] == 4
|
|
_save(res, "test_anime_seg.png")
|
|
|
|
res = model.gen_mask(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
|
|
assert len(res.shape) == 2
|
|
_save(res, "test_anime_seg_mask.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_upscale(device):
|
|
check_device(device)
|
|
model = RealESRGANUpscaler("realesr-general-x4v3", device)
|
|
res = model.gen_image(
|
|
rgb_img,
|
|
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=2),
|
|
)
|
|
_save(res, f"test_upscale_x2_{device}.png")
|
|
|
|
res = model.gen_image(
|
|
rgb_img,
|
|
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=4),
|
|
)
|
|
_save(res, f"test_upscale_x4_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_gfpgan(device):
|
|
check_device(device)
|
|
model = GFPGANPlugin(device)
|
|
res = model.gen_image(
|
|
rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64)
|
|
)
|
|
_save(res, f"test_gfpgan_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_restoreformer(device):
|
|
check_device(device)
|
|
model = RestoreFormerPlugin(device)
|
|
res = model.gen_image(
|
|
rgb_img, RunPluginRequest(name=RestoreFormerPlugin.name, image=rgb_img_base64)
|
|
)
|
|
_save(res, f"test_restoreformer_{device}.png")
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
|
def test_segment_anything(device):
|
|
check_device(device)
|
|
model = InteractiveSeg("vit_l", device)
|
|
new_mask = model.gen_mask(
|
|
rgb_img,
|
|
RunPluginRequest(
|
|
name=InteractiveSeg.name,
|
|
image=rgb_img_base64,
|
|
clicks=([[448 // 2, 394 // 2, 1]]),
|
|
),
|
|
)
|
|
|
|
save_name = f"test_segment_anything_{device}.png"
|
|
_save(new_mask, save_name)
|