mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-15 04:00:12 +01:00
407 lines
17 KiB
C
407 lines
17 KiB
C
|
/*
|
||
|
* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is the elliptic curve math library for prime field curves using floating point operations.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Sun Microsystems, Inc.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
|
||
|
*
|
||
|
* Alternatively, the contents of this file may be used under the terms of
|
||
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
||
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
||
|
* of those above. If you wish to allow use of your version of this file only
|
||
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
||
|
* use your version of this file under the terms of the MPL, indicate your
|
||
|
* decision by deleting the provisions above and replace them with the notice
|
||
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
||
|
* the provisions above, a recipient may use your version of this file under
|
||
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
|
||
|
#ifndef __ecp_fp_h_
|
||
|
#define __ecp_fp_h_
|
||
|
|
||
|
#include "mpi.h"
|
||
|
#include "ecl.h"
|
||
|
#include "ecp.h"
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include "mpi-priv.h"
|
||
|
|
||
|
#ifdef ECL_DEBUG
|
||
|
#include <assert.h>
|
||
|
#endif
|
||
|
|
||
|
/* Largest number of doubles to store one reduced number in floating
|
||
|
* point. Used for memory allocation on the stack. */
|
||
|
#define ECFP_MAXDOUBLES 10
|
||
|
|
||
|
/* For debugging purposes */
|
||
|
#ifndef ECL_DEBUG
|
||
|
#define ECFP_ASSERT(x)
|
||
|
#else
|
||
|
#define ECFP_ASSERT(x) assert(x)
|
||
|
#endif
|
||
|
|
||
|
/* ECFP_Ti = 2^(i*24) Define as preprocessor constants so we can use in
|
||
|
* multiple static constants */
|
||
|
#define ECFP_T0 1.0
|
||
|
#define ECFP_T1 16777216.0
|
||
|
#define ECFP_T2 281474976710656.0
|
||
|
#define ECFP_T3 4722366482869645213696.0
|
||
|
#define ECFP_T4 79228162514264337593543950336.0
|
||
|
#define ECFP_T5 1329227995784915872903807060280344576.0
|
||
|
#define ECFP_T6 22300745198530623141535718272648361505980416.0
|
||
|
#define ECFP_T7 374144419156711147060143317175368453031918731001856.0
|
||
|
#define ECFP_T8 6277101735386680763835789423207666416102355444464034512896.0
|
||
|
#define ECFP_T9 105312291668557186697918027683670432318895095400549111254310977536.0
|
||
|
#define ECFP_T10 1766847064778384329583297500742918515827483896875618958121606201292619776.0
|
||
|
#define ECFP_T11 29642774844752946028434172162224104410437116074403984394101141506025761187823616.0
|
||
|
#define ECFP_T12 497323236409786642155382248146820840100456150797347717440463976893159497012533375533056.0
|
||
|
#define ECFP_T13 8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652096.0
|
||
|
#define ECFP_T14 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444736.0
|
||
|
#define ECFP_T15 2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934976.0
|
||
|
#define ECFP_T16 39402006196394479212279040100143613805079739270465446667948293404245\
|
||
|
721771497210611414266254884915640806627990306816.0
|
||
|
#define ECFP_T17 66105596879024859895191530803277103982840468296428121928464879527440\
|
||
|
5791236311345825189210439715284847591212025023358304256.0
|
||
|
#define ECFP_T18 11090678776483259438313656736572334813745748301503266300681918322458\
|
||
|
485231222502492159897624416558312389564843845614287315896631296.0
|
||
|
#define ECFP_T19 18607071341967536398062689481932916079453218833595342343206149099024\
|
||
|
36577570298683715049089827234727835552055312041415509848580169253519\
|
||
|
36.0
|
||
|
|
||
|
#define ECFP_TWO160 1461501637330902918203684832716283019655932542976.0
|
||
|
#define ECFP_TWO192 6277101735386680763835789423207666416102355444464034512896.0
|
||
|
#define ECFP_TWO224 26959946667150639794667015087019630673637144422540572481103610249216.0
|
||
|
|
||
|
/* Multiplicative constants */
|
||
|
static const double ecfp_two32 = 4294967296.0;
|
||
|
static const double ecfp_two64 = 18446744073709551616.0;
|
||
|
static const double ecfp_twom16 = .0000152587890625;
|
||
|
static const double ecfp_twom128 =
|
||
|
.00000000000000000000000000000000000000293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625;
|
||
|
static const double ecfp_twom129 =
|
||
|
.000000000000000000000000000000000000001469367938527859384960920671527807097273331945965109401885939632848021574318408966064453125;
|
||
|
static const double ecfp_twom160 =
|
||
|
.0000000000000000000000000000000000000000000000006842277657836020854119773355907793609766904013068924666782559979930620520927053718196475529111921787261962890625;
|
||
|
static const double ecfp_twom192 =
|
||
|
.000000000000000000000000000000000000000000000000000000000159309191113245227702888039776771180559110455519261878607388585338616290151305816094308987472018268594098344692611135542392730712890625;
|
||
|
static const double ecfp_twom224 =
|
||
|
.00000000000000000000000000000000000000000000000000000000000000000003709206150687421385731735261547639513367564778757791002453039058917581340095629358997312082723208437536338919136001159027049567384892725385725498199462890625;
|
||
|
|
||
|
/* ecfp_exp[i] = 2^(i*ECFP_DSIZE) */
|
||
|
static const double ecfp_exp[2 * ECFP_MAXDOUBLES] = {
|
||
|
ECFP_T0, ECFP_T1, ECFP_T2, ECFP_T3, ECFP_T4, ECFP_T5,
|
||
|
ECFP_T6, ECFP_T7, ECFP_T8, ECFP_T9, ECFP_T10, ECFP_T11,
|
||
|
ECFP_T12, ECFP_T13, ECFP_T14, ECFP_T15, ECFP_T16, ECFP_T17, ECFP_T18,
|
||
|
ECFP_T19
|
||
|
};
|
||
|
|
||
|
/* 1.1 * 2^52 Uses 2^52 to truncate, the .1 is an extra 2^51 to protect
|
||
|
* the 2^52 bit, so that adding alphas to a negative number won't borrow
|
||
|
* and empty the important 2^52 bit */
|
||
|
#define ECFP_ALPHABASE_53 6755399441055744.0
|
||
|
/* Special case: On some platforms, notably x86 Linux, there is an
|
||
|
* extended-precision floating point representation with 64-bits of
|
||
|
* precision in the mantissa. These extra bits of precision require a
|
||
|
* larger value of alpha to truncate, i.e. 1.1 * 2^63. */
|
||
|
#define ECFP_ALPHABASE_64 13835058055282163712.0
|
||
|
|
||
|
/*
|
||
|
* ecfp_alpha[i] = 1.5 * 2^(52 + i*ECFP_DSIZE) we add and subtract alpha
|
||
|
* to truncate floating point numbers to a certain number of bits for
|
||
|
* tidying */
|
||
|
static const double ecfp_alpha_53[2 * ECFP_MAXDOUBLES] = {
|
||
|
ECFP_ALPHABASE_53 * ECFP_T0,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T1,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T2,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T3,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T4,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T5,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T6,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T7,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T8,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T9,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T10,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T11,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T12,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T13,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T14,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T15,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T16,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T17,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T18,
|
||
|
ECFP_ALPHABASE_53 * ECFP_T19
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* ecfp_alpha[i] = 1.5 * 2^(63 + i*ECFP_DSIZE) we add and subtract alpha
|
||
|
* to truncate floating point numbers to a certain number of bits for
|
||
|
* tidying */
|
||
|
static const double ecfp_alpha_64[2 * ECFP_MAXDOUBLES] = {
|
||
|
ECFP_ALPHABASE_64 * ECFP_T0,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T1,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T2,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T3,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T4,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T5,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T6,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T7,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T8,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T9,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T10,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T11,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T12,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T13,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T14,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T15,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T16,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T17,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T18,
|
||
|
ECFP_ALPHABASE_64 * ECFP_T19
|
||
|
};
|
||
|
|
||
|
/* 0.011111111111111111111111 (binary) = 0.5 - 2^25 (24 ones) */
|
||
|
#define ECFP_BETABASE 0.4999999701976776123046875
|
||
|
|
||
|
/*
|
||
|
* We subtract beta prior to using alpha to simulate rounding down. We
|
||
|
* make this close to 0.5 to round almost everything down, but exactly 0.5
|
||
|
* would cause some incorrect rounding. */
|
||
|
static const double ecfp_beta[2 * ECFP_MAXDOUBLES] = {
|
||
|
ECFP_BETABASE * ECFP_T0,
|
||
|
ECFP_BETABASE * ECFP_T1,
|
||
|
ECFP_BETABASE * ECFP_T2,
|
||
|
ECFP_BETABASE * ECFP_T3,
|
||
|
ECFP_BETABASE * ECFP_T4,
|
||
|
ECFP_BETABASE * ECFP_T5,
|
||
|
ECFP_BETABASE * ECFP_T6,
|
||
|
ECFP_BETABASE * ECFP_T7,
|
||
|
ECFP_BETABASE * ECFP_T8,
|
||
|
ECFP_BETABASE * ECFP_T9,
|
||
|
ECFP_BETABASE * ECFP_T10,
|
||
|
ECFP_BETABASE * ECFP_T11,
|
||
|
ECFP_BETABASE * ECFP_T12,
|
||
|
ECFP_BETABASE * ECFP_T13,
|
||
|
ECFP_BETABASE * ECFP_T14,
|
||
|
ECFP_BETABASE * ECFP_T15,
|
||
|
ECFP_BETABASE * ECFP_T16,
|
||
|
ECFP_BETABASE * ECFP_T17,
|
||
|
ECFP_BETABASE * ECFP_T18,
|
||
|
ECFP_BETABASE * ECFP_T19
|
||
|
};
|
||
|
|
||
|
static const double ecfp_beta_160 = ECFP_BETABASE * ECFP_TWO160;
|
||
|
static const double ecfp_beta_192 = ECFP_BETABASE * ECFP_TWO192;
|
||
|
static const double ecfp_beta_224 = ECFP_BETABASE * ECFP_TWO224;
|
||
|
|
||
|
/* Affine EC Point. This is the basic representation (x, y) of an elliptic
|
||
|
* curve point. */
|
||
|
typedef struct {
|
||
|
double x[ECFP_MAXDOUBLES];
|
||
|
double y[ECFP_MAXDOUBLES];
|
||
|
} ecfp_aff_pt;
|
||
|
|
||
|
/* Jacobian EC Point. This coordinate system uses X = x/z^2, Y = y/z^3,
|
||
|
* which enables calculations with fewer inversions than affine
|
||
|
* coordinates. */
|
||
|
typedef struct {
|
||
|
double x[ECFP_MAXDOUBLES];
|
||
|
double y[ECFP_MAXDOUBLES];
|
||
|
double z[ECFP_MAXDOUBLES];
|
||
|
} ecfp_jac_pt;
|
||
|
|
||
|
/* Chudnovsky Jacobian EC Point. This coordinate system is the same as
|
||
|
* Jacobian, except it keeps z^2, z^3 for faster additions. */
|
||
|
typedef struct {
|
||
|
double x[ECFP_MAXDOUBLES];
|
||
|
double y[ECFP_MAXDOUBLES];
|
||
|
double z[ECFP_MAXDOUBLES];
|
||
|
double z2[ECFP_MAXDOUBLES];
|
||
|
double z3[ECFP_MAXDOUBLES];
|
||
|
} ecfp_chud_pt;
|
||
|
|
||
|
/* Modified Jacobian EC Point. This coordinate system is the same as
|
||
|
* Jacobian, except it keeps a*z^4 for faster doublings. */
|
||
|
typedef struct {
|
||
|
double x[ECFP_MAXDOUBLES];
|
||
|
double y[ECFP_MAXDOUBLES];
|
||
|
double z[ECFP_MAXDOUBLES];
|
||
|
double az4[ECFP_MAXDOUBLES];
|
||
|
} ecfp_jm_pt;
|
||
|
|
||
|
struct EC_group_fp_str;
|
||
|
|
||
|
typedef struct EC_group_fp_str EC_group_fp;
|
||
|
struct EC_group_fp_str {
|
||
|
int fpPrecision; /* Set to number of bits in mantissa, 53
|
||
|
* or 64 */
|
||
|
int numDoubles;
|
||
|
int primeBitSize;
|
||
|
int orderBitSize;
|
||
|
int doubleBitSize;
|
||
|
int numInts;
|
||
|
int aIsM3; /* True if curvea == -3 (mod p), then we
|
||
|
* can optimize doubling */
|
||
|
double curvea[ECFP_MAXDOUBLES];
|
||
|
/* Used to truncate a double to the number of bits in the curve */
|
||
|
double bitSize_alpha;
|
||
|
/* Pointer to either ecfp_alpha_53 or ecfp_alpha_64 */
|
||
|
const double *alpha;
|
||
|
|
||
|
void (*ecfp_singleReduce) (double *r, const EC_group_fp * group);
|
||
|
void (*ecfp_reduce) (double *r, double *x, const EC_group_fp * group);
|
||
|
/* Performs a "tidy" operation, which performs carrying, moving excess
|
||
|
* bits from one double to the next double, so that the precision of
|
||
|
* the doubles is reduced to the regular precision ECFP_DSIZE. This
|
||
|
* might result in some float digits being negative. */
|
||
|
void (*ecfp_tidy) (double *t, const double *alpha,
|
||
|
const EC_group_fp * group);
|
||
|
/* Perform a point addition using coordinate system Jacobian + Affine
|
||
|
* -> Jacobian. Input and output should be multi-precision floating
|
||
|
* point integers. */
|
||
|
void (*pt_add_jac_aff) (const ecfp_jac_pt * p, const ecfp_aff_pt * q,
|
||
|
ecfp_jac_pt * r, const EC_group_fp * group);
|
||
|
/* Perform a point doubling in Jacobian coordinates. Input and output
|
||
|
* should be multi-precision floating point integers. */
|
||
|
void (*pt_dbl_jac) (const ecfp_jac_pt * dp, ecfp_jac_pt * dr,
|
||
|
const EC_group_fp * group);
|
||
|
/* Perform a point addition using Jacobian coordinate system. Input
|
||
|
* and output should be multi-precision floating point integers. */
|
||
|
void (*pt_add_jac) (const ecfp_jac_pt * p, const ecfp_jac_pt * q,
|
||
|
ecfp_jac_pt * r, const EC_group_fp * group);
|
||
|
/* Perform a point doubling in Modified Jacobian coordinates. Input
|
||
|
* and output should be multi-precision floating point integers. */
|
||
|
void (*pt_dbl_jm) (const ecfp_jm_pt * p, ecfp_jm_pt * r,
|
||
|
const EC_group_fp * group);
|
||
|
/* Perform a point doubling using coordinates Affine -> Chudnovsky
|
||
|
* Jacobian. Input and output should be multi-precision floating point
|
||
|
* integers. */
|
||
|
void (*pt_dbl_aff2chud) (const ecfp_aff_pt * p, ecfp_chud_pt * r,
|
||
|
const EC_group_fp * group);
|
||
|
/* Perform a point addition using coordinates: Modified Jacobian +
|
||
|
* Chudnovsky Jacobian -> Modified Jacobian. Input and output should
|
||
|
* be multi-precision floating point integers. */
|
||
|
void (*pt_add_jm_chud) (ecfp_jm_pt * p, ecfp_chud_pt * q,
|
||
|
ecfp_jm_pt * r, const EC_group_fp * group);
|
||
|
/* Perform a point addition using Chudnovsky Jacobian coordinates.
|
||
|
* Input and output should be multi-precision floating point integers.
|
||
|
*/
|
||
|
void (*pt_add_chud) (const ecfp_chud_pt * p, const ecfp_chud_pt * q,
|
||
|
ecfp_chud_pt * r, const EC_group_fp * group);
|
||
|
/* Expects out to be an array of size 16 of Chudnovsky Jacobian
|
||
|
* points. Fills in Chudnovsky Jacobian form (x, y, z, z^2, z^3), for
|
||
|
* -15P, -13P, -11P, -9P, -7P, -5P, -3P, -P, P, 3P, 5P, 7P, 9P, 11P,
|
||
|
* 13P, 15P */
|
||
|
void (*precompute_chud) (ecfp_chud_pt * out, const ecfp_aff_pt * p,
|
||
|
const EC_group_fp * group);
|
||
|
/* Expects out to be an array of size 16 of Jacobian points. Fills in
|
||
|
* Chudnovsky Jacobian form (x, y, z), for O, P, 2P, ... 15P */
|
||
|
void (*precompute_jac) (ecfp_jac_pt * out, const ecfp_aff_pt * p,
|
||
|
const EC_group_fp * group);
|
||
|
|
||
|
};
|
||
|
|
||
|
/* Computes r = x*y.
|
||
|
* r must be different (point to different memory) than x and y.
|
||
|
* Does not tidy or reduce. */
|
||
|
void ecfp_multiply(double *r, const double *x, const double *y);
|
||
|
|
||
|
/* Performs a "tidy" operation, which performs carrying, moving excess
|
||
|
* bits from one double to the next double, so that the precision of the
|
||
|
* doubles is reduced to the regular precision group->doubleBitSize. This
|
||
|
* might result in some float digits being negative. */
|
||
|
void ecfp_tidy(double *t, const double *alpha, const EC_group_fp * group);
|
||
|
|
||
|
/* Performs tidying on only the upper float digits of a multi-precision
|
||
|
* floating point integer, i.e. the digits beyond the regular length which
|
||
|
* are removed in the reduction step. */
|
||
|
void ecfp_tidyUpper(double *t, const EC_group_fp * group);
|
||
|
|
||
|
/* Performs tidying on a short multi-precision floating point integer (the
|
||
|
* lower group->numDoubles floats). */
|
||
|
void ecfp_tidyShort(double *t, const EC_group_fp * group);
|
||
|
|
||
|
/* Performs a more mathematically precise "tidying" so that each term is
|
||
|
* positive. This is slower than the regular tidying, and is used for
|
||
|
* conversion from floating point to integer. */
|
||
|
void ecfp_positiveTidy(double *t, const EC_group_fp * group);
|
||
|
|
||
|
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
|
||
|
* a, b and p are the elliptic curve coefficients and the prime that
|
||
|
* determines the field GFp. Elliptic curve points P and R can be
|
||
|
* identical. Uses mixed Jacobian-affine coordinates. Uses 4-bit window
|
||
|
* method. */
|
||
|
mp_err
|
||
|
ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
|
||
|
const mp_int *py, mp_int *rx, mp_int *ry,
|
||
|
const ECGroup *ecgroup);
|
||
|
|
||
|
/* Computes R = nP where R is (rx, ry) and P is the base point. The
|
||
|
* parameters a, b and p are the elliptic curve coefficients and the prime
|
||
|
* that determines the field GFp. Elliptic curve points P and R can be
|
||
|
* identical. Uses mixed Jacobian-affine coordinates (Jacobian
|
||
|
* coordinates for doubles and affine coordinates for additions; based on
|
||
|
* recommendation from Brown et al.). Uses window NAF method (algorithm
|
||
|
* 11) for scalar-point multiplication from Brown, Hankerson, Lopez,
|
||
|
* Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
|
||
|
* Fields. */
|
||
|
mp_err ec_GFp_point_mul_wNAF_fp(const mp_int *n, const mp_int *px,
|
||
|
const mp_int *py, mp_int *rx, mp_int *ry,
|
||
|
const ECGroup *ecgroup);
|
||
|
|
||
|
/* Uses mixed Jacobian-affine coordinates to perform a point
|
||
|
* multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
|
||
|
* coordinates (Jacobian coordinates for doubles and affine coordinates
|
||
|
* for additions; based on recommendation from Brown et al.). Not very
|
||
|
* time efficient but quite space efficient, no precomputation needed.
|
||
|
* group contains the elliptic curve coefficients and the prime that
|
||
|
* determines the field GFp. Elliptic curve points P and R can be
|
||
|
* identical. Performs calculations in floating point number format, since
|
||
|
* this is faster than the integer operations on the ULTRASPARC III.
|
||
|
* Uses left-to-right binary method (double & add) (algorithm 9) for
|
||
|
* scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
|
||
|
* Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
|
||
|
mp_err
|
||
|
ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
|
||
|
mp_int *rx, mp_int *ry, const ECGroup *ecgroup);
|
||
|
|
||
|
/* Cleans up extra memory allocated in ECGroup for this implementation. */
|
||
|
void ec_GFp_extra_free_fp(ECGroup *group);
|
||
|
|
||
|
/* Converts from a floating point representation into an mp_int. Expects
|
||
|
* that d is already reduced. */
|
||
|
void
|
||
|
ecfp_fp2i(mp_int *mpout, double *d, const ECGroup *ecgroup);
|
||
|
|
||
|
/* Converts from an mpint into a floating point representation. */
|
||
|
void
|
||
|
ecfp_i2fp(double *out, const mp_int *x, const ECGroup *ecgroup);
|
||
|
|
||
|
/* Tests what precision floating point arithmetic is set to. This should
|
||
|
* be either a 53-bit mantissa (IEEE standard) or a 64-bit mantissa
|
||
|
* (extended precision on x86) and sets it into the EC_group_fp. Returns
|
||
|
* either 53 or 64 accordingly. */
|
||
|
int ec_set_fp_precision(EC_group_fp * group);
|
||
|
|
||
|
#endif
|