mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-14 03:30:17 +01:00
152 lines
4.4 KiB
C
152 lines
4.4 KiB
C
|
/*
|
||
|
* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is the elliptic curve math library.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Sun Microsystems, Inc.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
|
||
|
*
|
||
|
* Alternatively, the contents of this file may be used under the terms of
|
||
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
||
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
||
|
* of those above. If you wish to allow use of your version of this file only
|
||
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
||
|
* use your version of this file under the terms of the MPL, indicate your
|
||
|
* decision by deleting the provisions above and replace them with the notice
|
||
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
||
|
* the provisions above, a recipient may use your version of this file under
|
||
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
|
||
|
#include "mpi.h"
|
||
|
#include "mplogic.h"
|
||
|
#include "ecl.h"
|
||
|
#include "ecp.h"
|
||
|
#include "ecl-priv.h"
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <stdio.h>
|
||
|
#include <time.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <sys/resource.h>
|
||
|
|
||
|
/* Returns 2^e as an integer. This is meant to be used for small powers of
|
||
|
* two. */
|
||
|
int ec_twoTo(int e);
|
||
|
|
||
|
/* Number of bits of scalar to test */
|
||
|
#define BITSIZE 160
|
||
|
|
||
|
/* Time k repetitions of operation op. */
|
||
|
#define M_TimeOperation(op, k) { \
|
||
|
double dStart, dNow, dUserTime; \
|
||
|
struct rusage ru; \
|
||
|
int i; \
|
||
|
getrusage(RUSAGE_SELF, &ru); \
|
||
|
dStart = (double)ru.ru_utime.tv_sec+(double)ru.ru_utime.tv_usec*0.000001; \
|
||
|
for (i = 0; i < k; i++) { \
|
||
|
{ op; } \
|
||
|
}; \
|
||
|
getrusage(RUSAGE_SELF, &ru); \
|
||
|
dNow = (double)ru.ru_utime.tv_sec+(double)ru.ru_utime.tv_usec*0.000001; \
|
||
|
dUserTime = dNow-dStart; \
|
||
|
if (dUserTime) printf(" %-45s\n k: %6i, t: %6.2f sec\n", #op, k, dUserTime); \
|
||
|
}
|
||
|
|
||
|
/* Tests wNAF computation. Non-adjacent-form is discussed in the paper: D.
|
||
|
* Hankerson, J. Hernandez and A. Menezes, "Software implementation of
|
||
|
* elliptic curve cryptography over binary fields", Proc. CHES 2000. */
|
||
|
|
||
|
mp_err
|
||
|
main(void)
|
||
|
{
|
||
|
signed char naf[BITSIZE + 1];
|
||
|
ECGroup *group = NULL;
|
||
|
mp_int k;
|
||
|
mp_int *scalar;
|
||
|
int i, count;
|
||
|
int res;
|
||
|
int w = 5;
|
||
|
char s[1000];
|
||
|
|
||
|
/* Get a 160 bit scalar to compute wNAF from */
|
||
|
group = ECGroup_fromName(ECCurve_SECG_PRIME_160R1);
|
||
|
scalar = &group->genx;
|
||
|
|
||
|
/* Compute wNAF representation of scalar */
|
||
|
ec_compute_wNAF(naf, BITSIZE, scalar, w);
|
||
|
|
||
|
/* Verify correctness of representation */
|
||
|
mp_init(&k); /* init k to 0 */
|
||
|
|
||
|
for (i = BITSIZE; i >= 0; i--) {
|
||
|
mp_add(&k, &k, &k);
|
||
|
/* digits in mp_???_d are unsigned */
|
||
|
if (naf[i] >= 0) {
|
||
|
mp_add_d(&k, naf[i], &k);
|
||
|
} else {
|
||
|
mp_sub_d(&k, -naf[i], &k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (mp_cmp(&k, scalar) != 0) {
|
||
|
printf("Error: incorrect NAF value.\n");
|
||
|
MP_CHECKOK(mp_toradix(&k, s, 16));
|
||
|
printf("NAF value %s\n", s);
|
||
|
MP_CHECKOK(mp_toradix(scalar, s, 16));
|
||
|
printf("original value %s\n", s);
|
||
|
goto CLEANUP;
|
||
|
}
|
||
|
|
||
|
/* Verify digits of representation are valid */
|
||
|
for (i = 0; i <= BITSIZE; i++) {
|
||
|
if (naf[i] % 2 == 0 && naf[i] != 0) {
|
||
|
printf("Error: Even non-zero digit found.\n");
|
||
|
goto CLEANUP;
|
||
|
}
|
||
|
if (naf[i] < -(ec_twoTo(w - 1)) || naf[i] >= ec_twoTo(w - 1)) {
|
||
|
printf("Error: Magnitude of naf digit too large.\n");
|
||
|
goto CLEANUP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Verify sparsity of representation */
|
||
|
count = w - 1;
|
||
|
for (i = 0; i <= BITSIZE; i++) {
|
||
|
if (naf[i] != 0) {
|
||
|
if (count < w - 1) {
|
||
|
printf("Error: Sparsity failed.\n");
|
||
|
goto CLEANUP;
|
||
|
}
|
||
|
count = 0;
|
||
|
} else
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
/* Check timing */
|
||
|
M_TimeOperation(ec_compute_wNAF(naf, BITSIZE, scalar, w), 10000);
|
||
|
|
||
|
printf("Test passed.\n");
|
||
|
CLEANUP:
|
||
|
ECGroup_free(group);
|
||
|
return MP_OKAY;
|
||
|
}
|