RetroZilla/security/nss/lib/freebl/sha_fast.c

464 lines
14 KiB
C
Raw Normal View History

2018-05-04 16:08:28 +02:00
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
2015-10-21 05:03:22 +02:00
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include <memory.h>
#include "blapi.h"
#include "sha_fast.h"
#include "prerror.h"
#ifdef TRACING_SSL
#include "ssl.h"
#include "ssltrace.h"
#endif
static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);
#define W u.w
#define B u.b
#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
/*
* SHA: initialize context
*/
void
SHA1_Begin(SHA1Context *ctx)
{
ctx->size = 0;
/*
* Initialize H with constants from FIPS180-1.
*/
ctx->H[0] = 0x67452301L;
ctx->H[1] = 0xefcdab89L;
ctx->H[2] = 0x98badcfeL;
ctx->H[3] = 0x10325476L;
ctx->H[4] = 0xc3d2e1f0L;
}
/* Explanation of H array and index values:
* The context's H array is actually the concatenation of two arrays
* defined by SHA1, the H array of state variables (5 elements),
* and the W array of intermediate values, of which there are 16 elements.
* The W array starts at H[5], that is W[0] is H[5].
* Although these values are defined as 32-bit values, we use 64-bit
* variables to hold them because the AMD64 stores 64 bit values in
* memory MUCH faster than it stores any smaller values.
*
* Rather than passing the context structure to shaCompress, we pass
* this combined array of H and W values. We do not pass the address
* of the first element of this array, but rather pass the address of an
* element in the middle of the array, element X. Presently X[0] is H[11].
* So we pass the address of H[11] as the address of array X to shaCompress.
* Then shaCompress accesses the members of the array using positive AND
* negative indexes.
*
* Pictorially: (each element is 8 bytes)
* H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
* X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
*
* The byte offset from X[0] to any member of H and W is always
* representable in a signed 8-bit value, which will be encoded
* as a single byte offset in the X86-64 instruction set.
* If we didn't pass the address of H[11], and instead passed the
* address of H[0], the offsets to elements H[16] and above would be
* greater than 127, not representable in a signed 8-bit value, and the
* x86-64 instruction set would encode every such offset as a 32-bit
* signed number in each instruction that accessed element H[16] or
* higher. This results in much bigger and slower code.
*/
#if !defined(SHA_PUT_W_IN_STACK)
#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
#else
#define H2X 0
#endif
/*
* SHA: Add data to context.
*/
void
SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
{
register unsigned int lenB;
register unsigned int togo;
if (!len)
return;
/* accumulate the byte count. */
lenB = (unsigned int)(ctx->size) & 63U;
ctx->size += len;
/*
* Read the data into W and process blocks as they get full
*/
if (lenB > 0) {
togo = 64U - lenB;
if (len < togo)
togo = len;
memcpy(ctx->B + lenB, dataIn, togo);
len -= togo;
dataIn += togo;
lenB = (lenB + togo) & 63U;
if (!lenB) {
shaCompress(&ctx->H[H2X], ctx->W);
}
}
#if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
while (len >= 64U) {
memcpy(ctx->B, dataIn, 64);
len -= 64U;
shaCompress(&ctx->H[H2X], ctx->W);
dataIn += 64U;
}
} else
#endif
{
while (len >= 64U) {
len -= 64U;
shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
dataIn += 64U;
}
}
if (len) {
memcpy(ctx->B, dataIn, len);
}
}
/*
* SHA: Generate hash value from context
*/
void
SHA1_End(SHA1Context *ctx, unsigned char *hashout,
unsigned int *pDigestLen, unsigned int maxDigestLen)
{
register PRUint64 size;
register PRUint32 lenB;
2018-05-04 16:08:28 +02:00
PRUint32 tmpbuf[5];
2015-10-21 05:03:22 +02:00
static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
#define tmp lenB
PORT_Assert (maxDigestLen >= SHA1_LENGTH);
/*
* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
*/
size = ctx->size;
lenB = (PRUint32)size & 63;
SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
PORT_Assert(((PRUint32)ctx->size & 63) == 56);
/* Convert size from bytes to bits. */
size <<= 3;
ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
ctx->W[15] = SHA_HTONL((PRUint32)size);
shaCompress(&ctx->H[H2X], ctx->W);
/*
* Output hash
*/
SHA_STORE_RESULT;
2018-05-04 16:08:28 +02:00
if (pDigestLen) {
*pDigestLen = SHA1_LENGTH;
}
#undef tmp
}
2015-10-21 05:03:22 +02:00
2018-05-04 16:08:28 +02:00
void
SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
unsigned int *pDigestLen, unsigned int maxDigestLen)
{
#if defined(SHA_NEED_TMP_VARIABLE)
register PRUint32 tmp;
#endif
PRUint32 tmpbuf[5];
PORT_Assert (maxDigestLen >= SHA1_LENGTH);
SHA_STORE_RESULT;
if (pDigestLen)
*pDigestLen = SHA1_LENGTH;
2015-10-21 05:03:22 +02:00
}
#undef B
/*
* SHA: Compression function, unrolled.
*
* Some operations in shaCompress are done as 5 groups of 16 operations.
* Others are done as 4 groups of 20 operations.
* The code below shows that structure.
*
* The functions that compute the new values of the 5 state variables
* A-E are done in 4 groups of 20 operations (or you may also think
* of them as being done in 16 groups of 5 operations). They are
* done by the SHA_RNDx macros below, in the right column.
*
* The functions that set the 16 values of the W array are done in
* 5 groups of 16 operations. The first group is done by the
* LOAD macros below, the latter 4 groups are done by SHA_MIX below,
* in the left column.
*
* gcc's optimizer observes that each member of the W array is assigned
* a value 5 times in this code. It reduces the number of store
* operations done to the W array in the context (that is, in the X array)
* by creating a W array on the stack, and storing the W values there for
* the first 4 groups of operations on W, and storing the values in the
* context's W array only in the fifth group. This is undesirable.
* It is MUCH bigger code than simply using the context's W array, because
* all the offsets to the W array in the stack are 32-bit signed offsets,
* and it is no faster than storing the values in the context's W array.
*
* The original code for sha_fast.c prevented this creation of a separate
* W array in the stack by creating a W array of 80 members, each of
* whose elements is assigned only once. It also separated the computations
* of the W array values and the computations of the values for the 5
* state variables into two separate passes, W's, then A-E's so that the
* second pass could be done all in registers (except for accessing the W
* array) on machines with fewer registers. The method is suboptimal
* for machines with enough registers to do it all in one pass, and it
* necessitates using many instructions with 32-bit offsets.
*
* This code eliminates the separate W array on the stack by a completely
* different means: by declaring the X array volatile. This prevents
* the optimizer from trying to reduce the use of the X array by the
* creation of a MORE expensive W array on the stack. The result is
* that all instructions use signed 8-bit offsets and not 32-bit offsets.
*
* The combination of this code and the -O3 optimizer flag on GCC 3.4.3
* results in code that is 3 times faster than the previous NSS sha_fast
* code on AMD64.
*/
static void
shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
{
register SHA_HW_t A, B, C, D, E;
#if defined(SHA_NEED_TMP_VARIABLE)
register PRUint32 tmp;
#endif
#if !defined(SHA_PUT_W_IN_STACK)
#define XH(n) X[n-H2X]
#define XW(n) X[n-W2X]
#else
SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#define XW(n) w_ ## n
#define XH(n) X[n]
#endif
#define K0 0x5a827999L
#define K1 0x6ed9eba1L
#define K2 0x8f1bbcdcL
#define K3 0xca62c1d6L
#define SHA_RND1(a,b,c,d,e,n) \
a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30)
#define SHA_RND2(a,b,c,d,e,n) \
a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30)
#define SHA_RND3(a,b,c,d,e,n) \
a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30)
#define SHA_RND4(a,b,c,d,e,n) \
a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30)
#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
A = XH(0);
B = XH(1);
C = XH(2);
D = XH(3);
E = XH(4);
LOAD(0); SHA_RND1(E,A,B,C,D, 0);
LOAD(1); SHA_RND1(D,E,A,B,C, 1);
LOAD(2); SHA_RND1(C,D,E,A,B, 2);
LOAD(3); SHA_RND1(B,C,D,E,A, 3);
LOAD(4); SHA_RND1(A,B,C,D,E, 4);
LOAD(5); SHA_RND1(E,A,B,C,D, 5);
LOAD(6); SHA_RND1(D,E,A,B,C, 6);
LOAD(7); SHA_RND1(C,D,E,A,B, 7);
LOAD(8); SHA_RND1(B,C,D,E,A, 8);
LOAD(9); SHA_RND1(A,B,C,D,E, 9);
LOAD(10); SHA_RND1(E,A,B,C,D,10);
LOAD(11); SHA_RND1(D,E,A,B,C,11);
LOAD(12); SHA_RND1(C,D,E,A,B,12);
LOAD(13); SHA_RND1(B,C,D,E,A,13);
LOAD(14); SHA_RND1(A,B,C,D,E,14);
LOAD(15); SHA_RND1(E,A,B,C,D,15);
SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
XH(0) += A;
XH(1) += B;
XH(2) += C;
XH(3) += D;
XH(4) += E;
}
/*************************************************************************
** Code below this line added to make SHA code support BLAPI interface
*/
SHA1Context *
SHA1_NewContext(void)
{
SHA1Context *cx;
/* no need to ZNew, SHA1_Begin will init the context */
cx = PORT_New(SHA1Context);
return cx;
}
/* Zero and free the context */
void
SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
{
memset(cx, 0, sizeof *cx);
if (freeit) {
PORT_Free(cx);
}
}
SECStatus
2018-05-04 16:08:28 +02:00
SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
2015-10-21 05:03:22 +02:00
{
SHA1Context ctx;
unsigned int outLen;
SHA1_Begin(&ctx);
SHA1_Update(&ctx, src, src_length);
SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
2018-05-04 16:08:28 +02:00
memset(&ctx, 0, sizeof ctx);
2015-10-21 05:03:22 +02:00
return SECSuccess;
}
/* Hash a null-terminated character string. */
SECStatus
SHA1_Hash(unsigned char *dest, const char *src)
{
return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
}
/*
* need to support save/restore state in pkcs11. Stores all the info necessary
* for a structure into just a stream of bytes.
*/
unsigned int
SHA1_FlattenSize(SHA1Context *cx)
{
return sizeof(SHA1Context);
}
SECStatus
SHA1_Flatten(SHA1Context *cx,unsigned char *space)
{
PORT_Memcpy(space,cx, sizeof(SHA1Context));
return SECSuccess;
}
SHA1Context *
SHA1_Resurrect(unsigned char *space,void *arg)
{
SHA1Context *cx = SHA1_NewContext();
if (cx == NULL) return NULL;
PORT_Memcpy(cx,space, sizeof(SHA1Context));
return cx;
}
void SHA1_Clone(SHA1Context *dest, SHA1Context *src)
{
memcpy(dest, src, sizeof *dest);
}
void
SHA1_TraceState(SHA1Context *ctx)
{
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
}