mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-10 01:40:17 +01:00
148 lines
4.3 KiB
C
148 lines
4.3 KiB
C
|
/*
|
||
|
* makeprime.c
|
||
|
*
|
||
|
* A simple prime generator function (and test driver). Prints out the
|
||
|
* first prime it finds greater than or equal to the starting value.
|
||
|
*
|
||
|
* Usage: makeprime <start>
|
||
|
*
|
||
|
* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Michael J. Fromberger.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 1998
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
*
|
||
|
* Alternatively, the contents of this file may be used under the terms of
|
||
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
||
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
||
|
* of those above. If you wish to allow use of your version of this file only
|
||
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
||
|
* use your version of this file under the terms of the MPL, indicate your
|
||
|
* decision by deleting the provisions above and replace them with the notice
|
||
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
||
|
* the provisions above, a recipient may use your version of this file under
|
||
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
/* $Id: makeprime.c,v 1.3 2004/04/27 23:04:37 gerv%gerv.net Exp $ */
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <ctype.h>
|
||
|
|
||
|
/* These two must be included for make_prime() to work */
|
||
|
|
||
|
#include "mpi.h"
|
||
|
#include "mpprime.h"
|
||
|
|
||
|
/*
|
||
|
make_prime(p, nr)
|
||
|
|
||
|
Find the smallest prime integer greater than or equal to p, where
|
||
|
primality is verified by 'nr' iterations of the Rabin-Miller
|
||
|
probabilistic primality test. The caller is responsible for
|
||
|
generating the initial value of p.
|
||
|
|
||
|
Returns MP_OKAY if a prime has been generated, otherwise the error
|
||
|
code indicates some other problem. The value of p is clobbered; the
|
||
|
caller should keep a copy if the value is needed.
|
||
|
*/
|
||
|
mp_err make_prime(mp_int *p, int nr);
|
||
|
|
||
|
/* The main() is not required -- it's just a test driver */
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
mp_int start;
|
||
|
mp_err res;
|
||
|
|
||
|
if(argc < 2) {
|
||
|
fprintf(stderr, "Usage: %s <start-value>\n", argv[0]);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
mp_init(&start);
|
||
|
if(argv[1][0] == '0' && tolower(argv[1][1]) == 'x') {
|
||
|
mp_read_radix(&start, argv[1] + 2, 16);
|
||
|
} else {
|
||
|
mp_read_radix(&start, argv[1], 10);
|
||
|
}
|
||
|
mp_abs(&start, &start);
|
||
|
|
||
|
if((res = make_prime(&start, 5)) != MP_OKAY) {
|
||
|
fprintf(stderr, "%s: error: %s\n", argv[0], mp_strerror(res));
|
||
|
mp_clear(&start);
|
||
|
|
||
|
return 1;
|
||
|
|
||
|
} else {
|
||
|
char *buf = malloc(mp_radix_size(&start, 10));
|
||
|
|
||
|
mp_todecimal(&start, buf);
|
||
|
printf("%s\n", buf);
|
||
|
free(buf);
|
||
|
|
||
|
mp_clear(&start);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
} /* end main() */
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
|
||
|
mp_err make_prime(mp_int *p, int nr)
|
||
|
{
|
||
|
mp_err res;
|
||
|
|
||
|
if(mp_iseven(p)) {
|
||
|
mp_add_d(p, 1, p);
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
mp_digit which = prime_tab_size;
|
||
|
|
||
|
/* First test for divisibility by a few small primes */
|
||
|
if((res = mpp_divis_primes(p, &which)) == MP_YES)
|
||
|
continue;
|
||
|
else if(res != MP_NO)
|
||
|
goto CLEANUP;
|
||
|
|
||
|
/* If that passes, try one iteration of Fermat's test */
|
||
|
if((res = mpp_fermat(p, 2)) == MP_NO)
|
||
|
continue;
|
||
|
else if(res != MP_YES)
|
||
|
goto CLEANUP;
|
||
|
|
||
|
/* If that passes, run Rabin-Miller as often as requested */
|
||
|
if((res = mpp_pprime(p, nr)) == MP_YES)
|
||
|
break;
|
||
|
else if(res != MP_NO)
|
||
|
goto CLEANUP;
|
||
|
|
||
|
} while((res = mp_add_d(p, 2, p)) == MP_OKAY);
|
||
|
|
||
|
CLEANUP:
|
||
|
return res;
|
||
|
|
||
|
} /* end make_prime() */
|
||
|
|
||
|
/*------------------------------------------------------------------------*/
|
||
|
/* HERE THERE BE DRAGONS */
|