mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-09 09:20:15 +01:00
1194 lines
35 KiB
C
1194 lines
35 KiB
C
|
/* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is the Netscape security libraries.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Netscape Communications Corporation.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 1994-2000
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
*
|
||
|
* Alternatively, the contents of this file may be used under the terms of
|
||
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
||
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
||
|
* of those above. If you wish to allow use of your version of this file only
|
||
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
||
|
* use your version of this file under the terms of the MPL, indicate your
|
||
|
* decision by deleting the provisions above and replace them with the notice
|
||
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
||
|
* the provisions above, a recipient may use your version of this file under
|
||
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
/* $Id: rijndael.c,v 1.24 2008/12/04 18:16:31 rrelyea%redhat.com Exp $ */
|
||
|
|
||
|
#ifdef FREEBL_NO_DEPEND
|
||
|
#include "stubs.h"
|
||
|
#endif
|
||
|
|
||
|
#include "prinit.h"
|
||
|
#include "prerr.h"
|
||
|
#include "secerr.h"
|
||
|
|
||
|
#include "prtypes.h"
|
||
|
#include "blapi.h"
|
||
|
#include "rijndael.h"
|
||
|
|
||
|
#if USE_HW_AES
|
||
|
#include "intel-aes.h"
|
||
|
#include "mpi.h"
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* There are currently five ways to build this code, varying in performance
|
||
|
* and code size.
|
||
|
*
|
||
|
* RIJNDAEL_INCLUDE_TABLES Include all tables from rijndael32.tab
|
||
|
* RIJNDAEL_GENERATE_TABLES Generate tables on first
|
||
|
* encryption/decryption, then store them;
|
||
|
* use the function gfm
|
||
|
* RIJNDAEL_GENERATE_TABLES_MACRO Same as above, but use macros to do
|
||
|
* the generation
|
||
|
* RIJNDAEL_GENERATE_VALUES Do not store tables, generate the table
|
||
|
* values "on-the-fly", using gfm
|
||
|
* RIJNDAEL_GENERATE_VALUES_MACRO Same as above, but use macros
|
||
|
*
|
||
|
* The default is RIJNDAEL_INCLUDE_TABLES.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* When building RIJNDAEL_INCLUDE_TABLES, includes S**-1, Rcon, T[0..4],
|
||
|
* T**-1[0..4], IMXC[0..4]
|
||
|
* When building anything else, includes S, S**-1, Rcon
|
||
|
*/
|
||
|
#include "rijndael32.tab"
|
||
|
|
||
|
#if defined(RIJNDAEL_INCLUDE_TABLES)
|
||
|
/*
|
||
|
* RIJNDAEL_INCLUDE_TABLES
|
||
|
*/
|
||
|
#define T0(i) _T0[i]
|
||
|
#define T1(i) _T1[i]
|
||
|
#define T2(i) _T2[i]
|
||
|
#define T3(i) _T3[i]
|
||
|
#define TInv0(i) _TInv0[i]
|
||
|
#define TInv1(i) _TInv1[i]
|
||
|
#define TInv2(i) _TInv2[i]
|
||
|
#define TInv3(i) _TInv3[i]
|
||
|
#define IMXC0(b) _IMXC0[b]
|
||
|
#define IMXC1(b) _IMXC1[b]
|
||
|
#define IMXC2(b) _IMXC2[b]
|
||
|
#define IMXC3(b) _IMXC3[b]
|
||
|
/* The S-box can be recovered from the T-tables */
|
||
|
#ifdef IS_LITTLE_ENDIAN
|
||
|
#define SBOX(b) ((PRUint8)_T3[b])
|
||
|
#else
|
||
|
#define SBOX(b) ((PRUint8)_T1[b])
|
||
|
#endif
|
||
|
#define SINV(b) (_SInv[b])
|
||
|
|
||
|
#else /* not RIJNDAEL_INCLUDE_TABLES */
|
||
|
|
||
|
/*
|
||
|
* Code for generating T-table values.
|
||
|
*/
|
||
|
|
||
|
#ifdef IS_LITTLE_ENDIAN
|
||
|
#define WORD4(b0, b1, b2, b3) \
|
||
|
(((b3) << 24) | ((b2) << 16) | ((b1) << 8) | (b0))
|
||
|
#else
|
||
|
#define WORD4(b0, b1, b2, b3) \
|
||
|
(((b0) << 24) | ((b1) << 16) | ((b2) << 8) | (b3))
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Define the S and S**-1 tables (both have been stored)
|
||
|
*/
|
||
|
#define SBOX(b) (_S[b])
|
||
|
#define SINV(b) (_SInv[b])
|
||
|
|
||
|
/*
|
||
|
* The function xtime, used for Galois field multiplication
|
||
|
*/
|
||
|
#define XTIME(a) \
|
||
|
((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1))
|
||
|
|
||
|
/* Choose GFM method (macros or function) */
|
||
|
#if defined(RIJNDAEL_GENERATE_TABLES_MACRO) || \
|
||
|
defined(RIJNDAEL_GENERATE_VALUES_MACRO)
|
||
|
|
||
|
/*
|
||
|
* Galois field GF(2**8) multipliers, in macro form
|
||
|
*/
|
||
|
#define GFM01(a) \
|
||
|
(a) /* a * 01 = a, the identity */
|
||
|
#define GFM02(a) \
|
||
|
(XTIME(a) & 0xff) /* a * 02 = xtime(a) */
|
||
|
#define GFM04(a) \
|
||
|
(GFM02(GFM02(a))) /* a * 04 = xtime**2(a) */
|
||
|
#define GFM08(a) \
|
||
|
(GFM02(GFM04(a))) /* a * 08 = xtime**3(a) */
|
||
|
#define GFM03(a) \
|
||
|
(GFM01(a) ^ GFM02(a)) /* a * 03 = a * (01 + 02) */
|
||
|
#define GFM09(a) \
|
||
|
(GFM01(a) ^ GFM08(a)) /* a * 09 = a * (01 + 08) */
|
||
|
#define GFM0B(a) \
|
||
|
(GFM01(a) ^ GFM02(a) ^ GFM08(a)) /* a * 0B = a * (01 + 02 + 08) */
|
||
|
#define GFM0D(a) \
|
||
|
(GFM01(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0D = a * (01 + 04 + 08) */
|
||
|
#define GFM0E(a) \
|
||
|
(GFM02(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0E = a * (02 + 04 + 08) */
|
||
|
|
||
|
#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_VALUES */
|
||
|
|
||
|
/* GF_MULTIPLY
|
||
|
*
|
||
|
* multiply two bytes represented in GF(2**8), mod (x**4 + 1)
|
||
|
*/
|
||
|
PRUint8 gfm(PRUint8 a, PRUint8 b)
|
||
|
{
|
||
|
PRUint8 res = 0;
|
||
|
while (b > 0) {
|
||
|
res = (b & 0x01) ? res ^ a : res;
|
||
|
a = XTIME(a);
|
||
|
b >>= 1;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
#define GFM01(a) \
|
||
|
(a) /* a * 01 = a, the identity */
|
||
|
#define GFM02(a) \
|
||
|
(XTIME(a) & 0xff) /* a * 02 = xtime(a) */
|
||
|
#define GFM03(a) \
|
||
|
(gfm(a, 0x03)) /* a * 03 */
|
||
|
#define GFM09(a) \
|
||
|
(gfm(a, 0x09)) /* a * 09 */
|
||
|
#define GFM0B(a) \
|
||
|
(gfm(a, 0x0B)) /* a * 0B */
|
||
|
#define GFM0D(a) \
|
||
|
(gfm(a, 0x0D)) /* a * 0D */
|
||
|
#define GFM0E(a) \
|
||
|
(gfm(a, 0x0E)) /* a * 0E */
|
||
|
|
||
|
#endif /* choosing GFM function */
|
||
|
|
||
|
/*
|
||
|
* The T-tables
|
||
|
*/
|
||
|
#define G_T0(i) \
|
||
|
( WORD4( GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)) ) )
|
||
|
#define G_T1(i) \
|
||
|
( WORD4( GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)) ) )
|
||
|
#define G_T2(i) \
|
||
|
( WORD4( GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)) ) )
|
||
|
#define G_T3(i) \
|
||
|
( WORD4( GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)) ) )
|
||
|
|
||
|
/*
|
||
|
* The inverse T-tables
|
||
|
*/
|
||
|
#define G_TInv0(i) \
|
||
|
( WORD4( GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)) ) )
|
||
|
#define G_TInv1(i) \
|
||
|
( WORD4( GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)) ) )
|
||
|
#define G_TInv2(i) \
|
||
|
( WORD4( GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)) ) )
|
||
|
#define G_TInv3(i) \
|
||
|
( WORD4( GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)) ) )
|
||
|
|
||
|
/*
|
||
|
* The inverse mix column tables
|
||
|
*/
|
||
|
#define G_IMXC0(i) \
|
||
|
( WORD4( GFM0E(i), GFM09(i), GFM0D(i), GFM0B(i) ) )
|
||
|
#define G_IMXC1(i) \
|
||
|
( WORD4( GFM0B(i), GFM0E(i), GFM09(i), GFM0D(i) ) )
|
||
|
#define G_IMXC2(i) \
|
||
|
( WORD4( GFM0D(i), GFM0B(i), GFM0E(i), GFM09(i) ) )
|
||
|
#define G_IMXC3(i) \
|
||
|
( WORD4( GFM09(i), GFM0D(i), GFM0B(i), GFM0E(i) ) )
|
||
|
|
||
|
/* Now choose the T-table indexing method */
|
||
|
#if defined(RIJNDAEL_GENERATE_VALUES)
|
||
|
/* generate values for the tables with a function*/
|
||
|
static PRUint32 gen_TInvXi(PRUint8 tx, PRUint8 i)
|
||
|
{
|
||
|
PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
|
||
|
si01 = SINV(i);
|
||
|
si02 = XTIME(si01);
|
||
|
si04 = XTIME(si02);
|
||
|
si08 = XTIME(si04);
|
||
|
si03 = si02 ^ si01;
|
||
|
si09 = si08 ^ si01;
|
||
|
si0B = si08 ^ si03;
|
||
|
si0D = si09 ^ si04;
|
||
|
si0E = si08 ^ si04 ^ si02;
|
||
|
switch (tx) {
|
||
|
case 0:
|
||
|
return WORD4(si0E, si09, si0D, si0B);
|
||
|
case 1:
|
||
|
return WORD4(si0B, si0E, si09, si0D);
|
||
|
case 2:
|
||
|
return WORD4(si0D, si0B, si0E, si09);
|
||
|
case 3:
|
||
|
return WORD4(si09, si0D, si0B, si0E);
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
#define T0(i) G_T0(i)
|
||
|
#define T1(i) G_T1(i)
|
||
|
#define T2(i) G_T2(i)
|
||
|
#define T3(i) G_T3(i)
|
||
|
#define TInv0(i) gen_TInvXi(0, i)
|
||
|
#define TInv1(i) gen_TInvXi(1, i)
|
||
|
#define TInv2(i) gen_TInvXi(2, i)
|
||
|
#define TInv3(i) gen_TInvXi(3, i)
|
||
|
#define IMXC0(b) G_IMXC0(b)
|
||
|
#define IMXC1(b) G_IMXC1(b)
|
||
|
#define IMXC2(b) G_IMXC2(b)
|
||
|
#define IMXC3(b) G_IMXC3(b)
|
||
|
#elif defined(RIJNDAEL_GENERATE_VALUES_MACRO)
|
||
|
/* generate values for the tables with macros */
|
||
|
#define T0(i) G_T0(i)
|
||
|
#define T1(i) G_T1(i)
|
||
|
#define T2(i) G_T2(i)
|
||
|
#define T3(i) G_T3(i)
|
||
|
#define TInv0(i) G_TInv0(i)
|
||
|
#define TInv1(i) G_TInv1(i)
|
||
|
#define TInv2(i) G_TInv2(i)
|
||
|
#define TInv3(i) G_TInv3(i)
|
||
|
#define IMXC0(b) G_IMXC0(b)
|
||
|
#define IMXC1(b) G_IMXC1(b)
|
||
|
#define IMXC2(b) G_IMXC2(b)
|
||
|
#define IMXC3(b) G_IMXC3(b)
|
||
|
#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_TABLES_MACRO */
|
||
|
/* Generate T and T**-1 table values and store, then index */
|
||
|
/* The inverse mix column tables are still generated */
|
||
|
#define T0(i) rijndaelTables->T0[i]
|
||
|
#define T1(i) rijndaelTables->T1[i]
|
||
|
#define T2(i) rijndaelTables->T2[i]
|
||
|
#define T3(i) rijndaelTables->T3[i]
|
||
|
#define TInv0(i) rijndaelTables->TInv0[i]
|
||
|
#define TInv1(i) rijndaelTables->TInv1[i]
|
||
|
#define TInv2(i) rijndaelTables->TInv2[i]
|
||
|
#define TInv3(i) rijndaelTables->TInv3[i]
|
||
|
#define IMXC0(b) G_IMXC0(b)
|
||
|
#define IMXC1(b) G_IMXC1(b)
|
||
|
#define IMXC2(b) G_IMXC2(b)
|
||
|
#define IMXC3(b) G_IMXC3(b)
|
||
|
#endif /* choose T-table indexing method */
|
||
|
|
||
|
#endif /* not RIJNDAEL_INCLUDE_TABLES */
|
||
|
|
||
|
#if defined(RIJNDAEL_GENERATE_TABLES) || \
|
||
|
defined(RIJNDAEL_GENERATE_TABLES_MACRO)
|
||
|
|
||
|
/* Code to generate and store the tables */
|
||
|
|
||
|
struct rijndael_tables_str {
|
||
|
PRUint32 T0[256];
|
||
|
PRUint32 T1[256];
|
||
|
PRUint32 T2[256];
|
||
|
PRUint32 T3[256];
|
||
|
PRUint32 TInv0[256];
|
||
|
PRUint32 TInv1[256];
|
||
|
PRUint32 TInv2[256];
|
||
|
PRUint32 TInv3[256];
|
||
|
};
|
||
|
|
||
|
static struct rijndael_tables_str *rijndaelTables = NULL;
|
||
|
static PRCallOnceType coRTInit = { 0, 0, 0 };
|
||
|
static PRStatus
|
||
|
init_rijndael_tables(void)
|
||
|
{
|
||
|
PRUint32 i;
|
||
|
PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
|
||
|
struct rijndael_tables_str *rts;
|
||
|
rts = (struct rijndael_tables_str *)
|
||
|
PORT_Alloc(sizeof(struct rijndael_tables_str));
|
||
|
if (!rts) return PR_FAILURE;
|
||
|
for (i=0; i<256; i++) {
|
||
|
/* The forward values */
|
||
|
si01 = SBOX(i);
|
||
|
si02 = XTIME(si01);
|
||
|
si03 = si02 ^ si01;
|
||
|
rts->T0[i] = WORD4(si02, si01, si01, si03);
|
||
|
rts->T1[i] = WORD4(si03, si02, si01, si01);
|
||
|
rts->T2[i] = WORD4(si01, si03, si02, si01);
|
||
|
rts->T3[i] = WORD4(si01, si01, si03, si02);
|
||
|
/* The inverse values */
|
||
|
si01 = SINV(i);
|
||
|
si02 = XTIME(si01);
|
||
|
si04 = XTIME(si02);
|
||
|
si08 = XTIME(si04);
|
||
|
si03 = si02 ^ si01;
|
||
|
si09 = si08 ^ si01;
|
||
|
si0B = si08 ^ si03;
|
||
|
si0D = si09 ^ si04;
|
||
|
si0E = si08 ^ si04 ^ si02;
|
||
|
rts->TInv0[i] = WORD4(si0E, si09, si0D, si0B);
|
||
|
rts->TInv1[i] = WORD4(si0B, si0E, si09, si0D);
|
||
|
rts->TInv2[i] = WORD4(si0D, si0B, si0E, si09);
|
||
|
rts->TInv3[i] = WORD4(si09, si0D, si0B, si0E);
|
||
|
}
|
||
|
/* wait until all the values are in to set */
|
||
|
rijndaelTables = rts;
|
||
|
return PR_SUCCESS;
|
||
|
}
|
||
|
|
||
|
#endif /* code to generate tables */
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Stuff related to the Rijndael key schedule
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
#define SUBBYTE(w) \
|
||
|
((SBOX((w >> 24) & 0xff) << 24) | \
|
||
|
(SBOX((w >> 16) & 0xff) << 16) | \
|
||
|
(SBOX((w >> 8) & 0xff) << 8) | \
|
||
|
(SBOX((w ) & 0xff) ))
|
||
|
|
||
|
#ifdef IS_LITTLE_ENDIAN
|
||
|
#define ROTBYTE(b) \
|
||
|
((b >> 8) | (b << 24))
|
||
|
#else
|
||
|
#define ROTBYTE(b) \
|
||
|
((b << 8) | (b >> 24))
|
||
|
#endif
|
||
|
|
||
|
/* rijndael_key_expansion7
|
||
|
*
|
||
|
* Generate the expanded key from the key input by the user.
|
||
|
* XXX
|
||
|
* Nk == 7 (224 key bits) is a weird case. Since Nk > 6, an added SubByte
|
||
|
* transformation is done periodically. The period is every 4 bytes, and
|
||
|
* since 7%4 != 0 this happens at different times for each key word (unlike
|
||
|
* Nk == 8 where it happens twice in every key word, in the same positions).
|
||
|
* For now, I'm implementing this case "dumbly", w/o any unrolling.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rijndael_key_expansion7(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
PRUint32 *W;
|
||
|
PRUint32 *pW;
|
||
|
PRUint32 tmp;
|
||
|
W = cx->expandedKey;
|
||
|
/* 1. the first Nk words contain the cipher key */
|
||
|
memcpy(W, key, Nk * 4);
|
||
|
i = Nk;
|
||
|
/* 2. loop until full expanded key is obtained */
|
||
|
pW = W + i - 1;
|
||
|
for (; i < cx->Nb * (cx->Nr + 1); ++i) {
|
||
|
tmp = *pW++;
|
||
|
if (i % Nk == 0)
|
||
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
||
|
else if (i % Nk == 4)
|
||
|
tmp = SUBBYTE(tmp);
|
||
|
*pW = W[i - Nk] ^ tmp;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
/* rijndael_key_expansion
|
||
|
*
|
||
|
* Generate the expanded key from the key input by the user.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rijndael_key_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
PRUint32 *W;
|
||
|
PRUint32 *pW;
|
||
|
PRUint32 tmp;
|
||
|
unsigned int round_key_words = cx->Nb * (cx->Nr + 1);
|
||
|
if (Nk == 7)
|
||
|
return rijndael_key_expansion7(cx, key, Nk);
|
||
|
W = cx->expandedKey;
|
||
|
/* The first Nk words contain the input cipher key */
|
||
|
memcpy(W, key, Nk * 4);
|
||
|
i = Nk;
|
||
|
pW = W + i - 1;
|
||
|
/* Loop over all sets of Nk words, except the last */
|
||
|
while (i < round_key_words - Nk) {
|
||
|
tmp = *pW++;
|
||
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
||
|
*pW = W[i++ - Nk] ^ tmp;
|
||
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
if (Nk == 4)
|
||
|
continue;
|
||
|
switch (Nk) {
|
||
|
case 8: tmp = *pW++; tmp = SUBBYTE(tmp); *pW = W[i++ - Nk] ^ tmp;
|
||
|
case 7: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
case 6: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
case 5: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
||
|
}
|
||
|
}
|
||
|
/* Generate the last word */
|
||
|
tmp = *pW++;
|
||
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
||
|
*pW = W[i++ - Nk] ^ tmp;
|
||
|
/* There may be overflow here, if Nk % (Nb * (Nr + 1)) > 0. However,
|
||
|
* since the above loop generated all but the last Nk key words, there
|
||
|
* is no more need for the SubByte transformation.
|
||
|
*/
|
||
|
if (Nk < 8) {
|
||
|
for (; i < round_key_words; ++i) {
|
||
|
tmp = *pW++;
|
||
|
*pW = W[i - Nk] ^ tmp;
|
||
|
}
|
||
|
} else {
|
||
|
/* except in the case when Nk == 8. Then one more SubByte may have
|
||
|
* to be performed, at i % Nk == 4.
|
||
|
*/
|
||
|
for (; i < round_key_words; ++i) {
|
||
|
tmp = *pW++;
|
||
|
if (i % Nk == 4)
|
||
|
tmp = SUBBYTE(tmp);
|
||
|
*pW = W[i - Nk] ^ tmp;
|
||
|
}
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
/* rijndael_invkey_expansion
|
||
|
*
|
||
|
* Generate the expanded key for the inverse cipher from the key input by
|
||
|
* the user.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rijndael_invkey_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
||
|
{
|
||
|
unsigned int r;
|
||
|
PRUint32 *roundkeyw;
|
||
|
PRUint8 *b;
|
||
|
int Nb = cx->Nb;
|
||
|
/* begins like usual key expansion ... */
|
||
|
if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
|
||
|
return SECFailure;
|
||
|
/* ... but has the additional step of InvMixColumn,
|
||
|
* excepting the first and last round keys.
|
||
|
*/
|
||
|
roundkeyw = cx->expandedKey + cx->Nb;
|
||
|
for (r=1; r<cx->Nr; ++r) {
|
||
|
/* each key word, roundkeyw, represents a column in the key
|
||
|
* matrix. Each column is multiplied by the InvMixColumn matrix.
|
||
|
* [ 0E 0B 0D 09 ] [ b0 ]
|
||
|
* [ 09 0E 0B 0D ] * [ b1 ]
|
||
|
* [ 0D 09 0E 0B ] [ b2 ]
|
||
|
* [ 0B 0D 09 0E ] [ b3 ]
|
||
|
*/
|
||
|
b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
if (Nb <= 4)
|
||
|
continue;
|
||
|
switch (Nb) {
|
||
|
case 8: b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
||
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
case 7: b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
||
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
case 6: b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
||
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
case 5: b = (PRUint8 *)roundkeyw;
|
||
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
||
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
||
|
}
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Stuff related to Rijndael encryption/decryption, optimized for
|
||
|
* a 128-bit blocksize.
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
#ifdef IS_LITTLE_ENDIAN
|
||
|
#define BYTE0WORD(w) ((w) & 0x000000ff)
|
||
|
#define BYTE1WORD(w) ((w) & 0x0000ff00)
|
||
|
#define BYTE2WORD(w) ((w) & 0x00ff0000)
|
||
|
#define BYTE3WORD(w) ((w) & 0xff000000)
|
||
|
#else
|
||
|
#define BYTE0WORD(w) ((w) & 0xff000000)
|
||
|
#define BYTE1WORD(w) ((w) & 0x00ff0000)
|
||
|
#define BYTE2WORD(w) ((w) & 0x0000ff00)
|
||
|
#define BYTE3WORD(w) ((w) & 0x000000ff)
|
||
|
#endif
|
||
|
|
||
|
typedef union {
|
||
|
PRUint32 w[4];
|
||
|
PRUint8 b[16];
|
||
|
} rijndael_state;
|
||
|
|
||
|
#define COLUMN_0(state) state.w[0]
|
||
|
#define COLUMN_1(state) state.w[1]
|
||
|
#define COLUMN_2(state) state.w[2]
|
||
|
#define COLUMN_3(state) state.w[3]
|
||
|
|
||
|
#define STATE_BYTE(i) state.b[i]
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_encryptBlock128(AESContext *cx,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
unsigned int r;
|
||
|
PRUint32 *roundkeyw;
|
||
|
rijndael_state state;
|
||
|
PRUint32 C0, C1, C2, C3;
|
||
|
#if defined(_X86_)
|
||
|
#define pIn input
|
||
|
#define pOut output
|
||
|
#else
|
||
|
unsigned char *pIn, *pOut;
|
||
|
PRUint32 inBuf[4], outBuf[4];
|
||
|
|
||
|
if ((ptrdiff_t)input & 0x3) {
|
||
|
memcpy(inBuf, input, sizeof inBuf);
|
||
|
pIn = (unsigned char *)inBuf;
|
||
|
} else {
|
||
|
pIn = (unsigned char *)input;
|
||
|
}
|
||
|
if ((ptrdiff_t)output & 0x3) {
|
||
|
pOut = (unsigned char *)outBuf;
|
||
|
} else {
|
||
|
pOut = (unsigned char *)output;
|
||
|
}
|
||
|
#endif
|
||
|
roundkeyw = cx->expandedKey;
|
||
|
/* Step 1: Add Round Key 0 to initial state */
|
||
|
COLUMN_0(state) = *((PRUint32 *)(pIn )) ^ *roundkeyw++;
|
||
|
COLUMN_1(state) = *((PRUint32 *)(pIn + 4 )) ^ *roundkeyw++;
|
||
|
COLUMN_2(state) = *((PRUint32 *)(pIn + 8 )) ^ *roundkeyw++;
|
||
|
COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw++;
|
||
|
/* Step 2: Loop over rounds [1..NR-1] */
|
||
|
for (r=1; r<cx->Nr; ++r) {
|
||
|
/* Do ShiftRow, ByteSub, and MixColumn all at once */
|
||
|
C0 = T0(STATE_BYTE(0)) ^
|
||
|
T1(STATE_BYTE(5)) ^
|
||
|
T2(STATE_BYTE(10)) ^
|
||
|
T3(STATE_BYTE(15));
|
||
|
C1 = T0(STATE_BYTE(4)) ^
|
||
|
T1(STATE_BYTE(9)) ^
|
||
|
T2(STATE_BYTE(14)) ^
|
||
|
T3(STATE_BYTE(3));
|
||
|
C2 = T0(STATE_BYTE(8)) ^
|
||
|
T1(STATE_BYTE(13)) ^
|
||
|
T2(STATE_BYTE(2)) ^
|
||
|
T3(STATE_BYTE(7));
|
||
|
C3 = T0(STATE_BYTE(12)) ^
|
||
|
T1(STATE_BYTE(1)) ^
|
||
|
T2(STATE_BYTE(6)) ^
|
||
|
T3(STATE_BYTE(11));
|
||
|
/* Round key addition */
|
||
|
COLUMN_0(state) = C0 ^ *roundkeyw++;
|
||
|
COLUMN_1(state) = C1 ^ *roundkeyw++;
|
||
|
COLUMN_2(state) = C2 ^ *roundkeyw++;
|
||
|
COLUMN_3(state) = C3 ^ *roundkeyw++;
|
||
|
}
|
||
|
/* Step 3: Do the last round */
|
||
|
/* Final round does not employ MixColumn */
|
||
|
C0 = ((BYTE0WORD(T2(STATE_BYTE(0)))) |
|
||
|
(BYTE1WORD(T3(STATE_BYTE(5)))) |
|
||
|
(BYTE2WORD(T0(STATE_BYTE(10)))) |
|
||
|
(BYTE3WORD(T1(STATE_BYTE(15))))) ^
|
||
|
*roundkeyw++;
|
||
|
C1 = ((BYTE0WORD(T2(STATE_BYTE(4)))) |
|
||
|
(BYTE1WORD(T3(STATE_BYTE(9)))) |
|
||
|
(BYTE2WORD(T0(STATE_BYTE(14)))) |
|
||
|
(BYTE3WORD(T1(STATE_BYTE(3))))) ^
|
||
|
*roundkeyw++;
|
||
|
C2 = ((BYTE0WORD(T2(STATE_BYTE(8)))) |
|
||
|
(BYTE1WORD(T3(STATE_BYTE(13)))) |
|
||
|
(BYTE2WORD(T0(STATE_BYTE(2)))) |
|
||
|
(BYTE3WORD(T1(STATE_BYTE(7))))) ^
|
||
|
*roundkeyw++;
|
||
|
C3 = ((BYTE0WORD(T2(STATE_BYTE(12)))) |
|
||
|
(BYTE1WORD(T3(STATE_BYTE(1)))) |
|
||
|
(BYTE2WORD(T0(STATE_BYTE(6)))) |
|
||
|
(BYTE3WORD(T1(STATE_BYTE(11))))) ^
|
||
|
*roundkeyw++;
|
||
|
*((PRUint32 *) pOut ) = C0;
|
||
|
*((PRUint32 *)(pOut + 4)) = C1;
|
||
|
*((PRUint32 *)(pOut + 8)) = C2;
|
||
|
*((PRUint32 *)(pOut + 12)) = C3;
|
||
|
#if defined(_X86_)
|
||
|
#undef pIn
|
||
|
#undef pOut
|
||
|
#else
|
||
|
if ((ptrdiff_t)output & 0x3) {
|
||
|
memcpy(output, outBuf, sizeof outBuf);
|
||
|
}
|
||
|
#endif
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_decryptBlock128(AESContext *cx,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
int r;
|
||
|
PRUint32 *roundkeyw;
|
||
|
rijndael_state state;
|
||
|
PRUint32 C0, C1, C2, C3;
|
||
|
#if defined(_X86_)
|
||
|
#define pIn input
|
||
|
#define pOut output
|
||
|
#else
|
||
|
unsigned char *pIn, *pOut;
|
||
|
PRUint32 inBuf[4], outBuf[4];
|
||
|
|
||
|
if ((ptrdiff_t)input & 0x3) {
|
||
|
memcpy(inBuf, input, sizeof inBuf);
|
||
|
pIn = (unsigned char *)inBuf;
|
||
|
} else {
|
||
|
pIn = (unsigned char *)input;
|
||
|
}
|
||
|
if ((ptrdiff_t)output & 0x3) {
|
||
|
pOut = (unsigned char *)outBuf;
|
||
|
} else {
|
||
|
pOut = (unsigned char *)output;
|
||
|
}
|
||
|
#endif
|
||
|
roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
|
||
|
/* reverse the final key addition */
|
||
|
COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw--;
|
||
|
COLUMN_2(state) = *((PRUint32 *)(pIn + 8)) ^ *roundkeyw--;
|
||
|
COLUMN_1(state) = *((PRUint32 *)(pIn + 4)) ^ *roundkeyw--;
|
||
|
COLUMN_0(state) = *((PRUint32 *)(pIn )) ^ *roundkeyw--;
|
||
|
/* Loop over rounds in reverse [NR..1] */
|
||
|
for (r=cx->Nr; r>1; --r) {
|
||
|
/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
|
||
|
C0 = TInv0(STATE_BYTE(0)) ^
|
||
|
TInv1(STATE_BYTE(13)) ^
|
||
|
TInv2(STATE_BYTE(10)) ^
|
||
|
TInv3(STATE_BYTE(7));
|
||
|
C1 = TInv0(STATE_BYTE(4)) ^
|
||
|
TInv1(STATE_BYTE(1)) ^
|
||
|
TInv2(STATE_BYTE(14)) ^
|
||
|
TInv3(STATE_BYTE(11));
|
||
|
C2 = TInv0(STATE_BYTE(8)) ^
|
||
|
TInv1(STATE_BYTE(5)) ^
|
||
|
TInv2(STATE_BYTE(2)) ^
|
||
|
TInv3(STATE_BYTE(15));
|
||
|
C3 = TInv0(STATE_BYTE(12)) ^
|
||
|
TInv1(STATE_BYTE(9)) ^
|
||
|
TInv2(STATE_BYTE(6)) ^
|
||
|
TInv3(STATE_BYTE(3));
|
||
|
/* Invert the key addition step */
|
||
|
COLUMN_3(state) = C3 ^ *roundkeyw--;
|
||
|
COLUMN_2(state) = C2 ^ *roundkeyw--;
|
||
|
COLUMN_1(state) = C1 ^ *roundkeyw--;
|
||
|
COLUMN_0(state) = C0 ^ *roundkeyw--;
|
||
|
}
|
||
|
/* inverse sub */
|
||
|
pOut[ 0] = SINV(STATE_BYTE( 0));
|
||
|
pOut[ 1] = SINV(STATE_BYTE(13));
|
||
|
pOut[ 2] = SINV(STATE_BYTE(10));
|
||
|
pOut[ 3] = SINV(STATE_BYTE( 7));
|
||
|
pOut[ 4] = SINV(STATE_BYTE( 4));
|
||
|
pOut[ 5] = SINV(STATE_BYTE( 1));
|
||
|
pOut[ 6] = SINV(STATE_BYTE(14));
|
||
|
pOut[ 7] = SINV(STATE_BYTE(11));
|
||
|
pOut[ 8] = SINV(STATE_BYTE( 8));
|
||
|
pOut[ 9] = SINV(STATE_BYTE( 5));
|
||
|
pOut[10] = SINV(STATE_BYTE( 2));
|
||
|
pOut[11] = SINV(STATE_BYTE(15));
|
||
|
pOut[12] = SINV(STATE_BYTE(12));
|
||
|
pOut[13] = SINV(STATE_BYTE( 9));
|
||
|
pOut[14] = SINV(STATE_BYTE( 6));
|
||
|
pOut[15] = SINV(STATE_BYTE( 3));
|
||
|
/* final key addition */
|
||
|
*((PRUint32 *)(pOut + 12)) ^= *roundkeyw--;
|
||
|
*((PRUint32 *)(pOut + 8)) ^= *roundkeyw--;
|
||
|
*((PRUint32 *)(pOut + 4)) ^= *roundkeyw--;
|
||
|
*((PRUint32 *) pOut ) ^= *roundkeyw--;
|
||
|
#if defined(_X86_)
|
||
|
#undef pIn
|
||
|
#undef pOut
|
||
|
#else
|
||
|
if ((ptrdiff_t)output & 0x3) {
|
||
|
memcpy(output, outBuf, sizeof outBuf);
|
||
|
}
|
||
|
#endif
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Stuff related to general Rijndael encryption/decryption, for blocksizes
|
||
|
* greater than 128 bits.
|
||
|
*
|
||
|
* XXX This code is currently untested! So far, AES specs have only been
|
||
|
* released for 128 bit blocksizes. This will be tested, but for now
|
||
|
* only the code above has been tested using known values.
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
#define COLUMN(array, j) *((PRUint32 *)(array + j))
|
||
|
|
||
|
SECStatus
|
||
|
rijndael_encryptBlock(AESContext *cx,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
return SECFailure;
|
||
|
#ifdef rijndael_large_blocks_fixed
|
||
|
unsigned int j, r, Nb;
|
||
|
unsigned int c2=0, c3=0;
|
||
|
PRUint32 *roundkeyw;
|
||
|
PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
|
||
|
Nb = cx->Nb;
|
||
|
roundkeyw = cx->expandedKey;
|
||
|
/* Step 1: Add Round Key 0 to initial state */
|
||
|
for (j=0; j<4*Nb; j+=4) {
|
||
|
COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw++;
|
||
|
}
|
||
|
/* Step 2: Loop over rounds [1..NR-1] */
|
||
|
for (r=1; r<cx->Nr; ++r) {
|
||
|
for (j=0; j<Nb; ++j) {
|
||
|
COLUMN(output, j) = T0(STATE_BYTE(4* j )) ^
|
||
|
T1(STATE_BYTE(4*((j+ 1)%Nb)+1)) ^
|
||
|
T2(STATE_BYTE(4*((j+c2)%Nb)+2)) ^
|
||
|
T3(STATE_BYTE(4*((j+c3)%Nb)+3));
|
||
|
}
|
||
|
for (j=0; j<4*Nb; j+=4) {
|
||
|
COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw++;
|
||
|
}
|
||
|
}
|
||
|
/* Step 3: Do the last round */
|
||
|
/* Final round does not employ MixColumn */
|
||
|
for (j=0; j<Nb; ++j) {
|
||
|
COLUMN(output, j) = ((BYTE0WORD(T2(STATE_BYTE(4* j )))) |
|
||
|
(BYTE1WORD(T3(STATE_BYTE(4*(j+ 1)%Nb)+1))) |
|
||
|
(BYTE2WORD(T0(STATE_BYTE(4*(j+c2)%Nb)+2))) |
|
||
|
(BYTE3WORD(T1(STATE_BYTE(4*(j+c3)%Nb)+3)))) ^
|
||
|
*roundkeyw++;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
SECStatus
|
||
|
rijndael_decryptBlock(AESContext *cx,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
return SECFailure;
|
||
|
#ifdef rijndael_large_blocks_fixed
|
||
|
int j, r, Nb;
|
||
|
int c2=0, c3=0;
|
||
|
PRUint32 *roundkeyw;
|
||
|
PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
|
||
|
Nb = cx->Nb;
|
||
|
roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
|
||
|
/* reverse key addition */
|
||
|
for (j=4*Nb; j>=0; j-=4) {
|
||
|
COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw--;
|
||
|
}
|
||
|
/* Loop over rounds in reverse [NR..1] */
|
||
|
for (r=cx->Nr; r>1; --r) {
|
||
|
/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
|
||
|
for (j=0; j<Nb; ++j) {
|
||
|
COLUMN(output, 4*j) = TInv0(STATE_BYTE(4* j )) ^
|
||
|
TInv1(STATE_BYTE(4*(j+Nb- 1)%Nb)+1) ^
|
||
|
TInv2(STATE_BYTE(4*(j+Nb-c2)%Nb)+2) ^
|
||
|
TInv3(STATE_BYTE(4*(j+Nb-c3)%Nb)+3);
|
||
|
}
|
||
|
/* Invert the key addition step */
|
||
|
for (j=4*Nb; j>=0; j-=4) {
|
||
|
COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw--;
|
||
|
}
|
||
|
}
|
||
|
/* inverse sub */
|
||
|
for (j=0; j<4*Nb; ++j) {
|
||
|
output[j] = SINV(clone[j]);
|
||
|
}
|
||
|
/* final key addition */
|
||
|
for (j=4*Nb; j>=0; j-=4) {
|
||
|
COLUMN(output, j) ^= *roundkeyw--;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Rijndael modes of operation (ECB and CBC)
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_encryptECB(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen,
|
||
|
unsigned int blocksize)
|
||
|
{
|
||
|
SECStatus rv;
|
||
|
AESBlockFunc *encryptor;
|
||
|
|
||
|
|
||
|
encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
||
|
? &rijndael_encryptBlock128
|
||
|
: &rijndael_encryptBlock;
|
||
|
while (inputLen > 0) {
|
||
|
rv = (*encryptor)(cx, output, input);
|
||
|
if (rv != SECSuccess)
|
||
|
return rv;
|
||
|
output += blocksize;
|
||
|
input += blocksize;
|
||
|
inputLen -= blocksize;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_encryptCBC(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen,
|
||
|
unsigned int blocksize)
|
||
|
{
|
||
|
unsigned int j;
|
||
|
SECStatus rv;
|
||
|
AESBlockFunc *encryptor;
|
||
|
unsigned char *lastblock;
|
||
|
unsigned char inblock[RIJNDAEL_MAX_STATE_SIZE * 8];
|
||
|
|
||
|
if (!inputLen)
|
||
|
return SECSuccess;
|
||
|
lastblock = cx->iv;
|
||
|
encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
||
|
? &rijndael_encryptBlock128
|
||
|
: &rijndael_encryptBlock;
|
||
|
while (inputLen > 0) {
|
||
|
/* XOR with the last block (IV if first block) */
|
||
|
for (j=0; j<blocksize; ++j)
|
||
|
inblock[j] = input[j] ^ lastblock[j];
|
||
|
/* encrypt */
|
||
|
rv = (*encryptor)(cx, output, inblock);
|
||
|
if (rv != SECSuccess)
|
||
|
return rv;
|
||
|
/* move to the next block */
|
||
|
lastblock = output;
|
||
|
output += blocksize;
|
||
|
input += blocksize;
|
||
|
inputLen -= blocksize;
|
||
|
}
|
||
|
memcpy(cx->iv, lastblock, blocksize);
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_decryptECB(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen,
|
||
|
unsigned int blocksize)
|
||
|
{
|
||
|
SECStatus rv;
|
||
|
AESBlockFunc *decryptor;
|
||
|
|
||
|
decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
||
|
? &rijndael_decryptBlock128
|
||
|
: &rijndael_decryptBlock;
|
||
|
while (inputLen > 0) {
|
||
|
rv = (*decryptor)(cx, output, input);
|
||
|
if (rv != SECSuccess)
|
||
|
return rv;
|
||
|
output += blocksize;
|
||
|
input += blocksize;
|
||
|
inputLen -= blocksize;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
rijndael_decryptCBC(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen,
|
||
|
unsigned int blocksize)
|
||
|
{
|
||
|
SECStatus rv;
|
||
|
AESBlockFunc *decryptor;
|
||
|
const unsigned char *in;
|
||
|
unsigned char *out;
|
||
|
unsigned int j;
|
||
|
unsigned char newIV[RIJNDAEL_MAX_BLOCKSIZE];
|
||
|
|
||
|
|
||
|
if (!inputLen)
|
||
|
return SECSuccess;
|
||
|
PORT_Assert(output - input >= 0 || input - output >= (int)inputLen );
|
||
|
decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
||
|
? &rijndael_decryptBlock128
|
||
|
: &rijndael_decryptBlock;
|
||
|
in = input + (inputLen - blocksize);
|
||
|
memcpy(newIV, in, blocksize);
|
||
|
out = output + (inputLen - blocksize);
|
||
|
while (inputLen > blocksize) {
|
||
|
rv = (*decryptor)(cx, out, in);
|
||
|
if (rv != SECSuccess)
|
||
|
return rv;
|
||
|
for (j=0; j<blocksize; ++j)
|
||
|
out[j] ^= in[(int)(j - blocksize)];
|
||
|
out -= blocksize;
|
||
|
in -= blocksize;
|
||
|
inputLen -= blocksize;
|
||
|
}
|
||
|
if (in == input) {
|
||
|
rv = (*decryptor)(cx, out, in);
|
||
|
if (rv != SECSuccess)
|
||
|
return rv;
|
||
|
for (j=0; j<blocksize; ++j)
|
||
|
out[j] ^= cx->iv[j];
|
||
|
}
|
||
|
memcpy(cx->iv, newIV, blocksize);
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* BLAPI Interface functions
|
||
|
*
|
||
|
* The following functions implement the encryption routines defined in
|
||
|
* BLAPI for the AES cipher, Rijndael.
|
||
|
*
|
||
|
***********************************************************************/
|
||
|
|
||
|
AESContext * AES_AllocateContext(void)
|
||
|
{
|
||
|
return PORT_ZNew(AESContext);
|
||
|
}
|
||
|
|
||
|
|
||
|
SECStatus
|
||
|
AES_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize,
|
||
|
const unsigned char *iv, int mode, unsigned int encrypt,
|
||
|
unsigned int blocksize)
|
||
|
{
|
||
|
#if USE_HW_AES
|
||
|
static int has_intel_aes;
|
||
|
PRBool use_hw_aes = PR_FALSE;
|
||
|
#endif
|
||
|
unsigned int Nk;
|
||
|
/* According to Rijndael AES Proposal, section 12.1, block and key
|
||
|
* lengths between 128 and 256 bits are supported, as long as the
|
||
|
* length in bytes is divisible by 4.
|
||
|
*/
|
||
|
if (key == NULL ||
|
||
|
keysize < RIJNDAEL_MIN_BLOCKSIZE ||
|
||
|
keysize > RIJNDAEL_MAX_BLOCKSIZE ||
|
||
|
keysize % 4 != 0 ||
|
||
|
blocksize < RIJNDAEL_MIN_BLOCKSIZE ||
|
||
|
blocksize > RIJNDAEL_MAX_BLOCKSIZE ||
|
||
|
blocksize % 4 != 0) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
if (mode != NSS_AES && mode != NSS_AES_CBC) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
if (mode == NSS_AES_CBC && iv == NULL) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
if (!cx) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
#if USE_HW_AES
|
||
|
if (has_intel_aes == 0) {
|
||
|
unsigned long eax, ebx, ecx, edx;
|
||
|
|
||
|
freebl_cpuid(1, &eax, &ebx, &ecx, &edx);
|
||
|
has_intel_aes = (ecx & (1 << 25)) != 0 ? 1 : -1;
|
||
|
}
|
||
|
use_hw_aes = (PRBool)
|
||
|
(has_intel_aes > 0 && (keysize % 8) == 0 && blocksize == 16);
|
||
|
#endif
|
||
|
/* Nb = (block size in bits) / 32 */
|
||
|
cx->Nb = blocksize / 4;
|
||
|
/* Nk = (key size in bits) / 32 */
|
||
|
Nk = keysize / 4;
|
||
|
/* Obtain number of rounds from "table" */
|
||
|
cx->Nr = RIJNDAEL_NUM_ROUNDS(Nk, cx->Nb);
|
||
|
/* copy in the iv, if neccessary */
|
||
|
if (mode == NSS_AES_CBC) {
|
||
|
memcpy(cx->iv, iv, blocksize);
|
||
|
#if USE_HW_AES
|
||
|
if (use_hw_aes) {
|
||
|
cx->worker = intel_aes_cbc_worker(encrypt, keysize);
|
||
|
} else
|
||
|
#endif
|
||
|
cx->worker = (encrypt
|
||
|
? &rijndael_encryptCBC : &rijndael_decryptCBC);
|
||
|
} else {
|
||
|
#if USE_HW_AES
|
||
|
if (use_hw_aes) {
|
||
|
cx->worker = intel_aes_ecb_worker(encrypt, keysize);
|
||
|
} else
|
||
|
#endif
|
||
|
cx->worker = (encrypt
|
||
|
? &rijndael_encryptECB : &rijndael_decryptECB);
|
||
|
}
|
||
|
PORT_Assert((cx->Nb * (cx->Nr + 1)) <= RIJNDAEL_MAX_EXP_KEY_SIZE);
|
||
|
if ((cx->Nb * (cx->Nr + 1)) > RIJNDAEL_MAX_EXP_KEY_SIZE) {
|
||
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
#ifdef USE_HW_AES
|
||
|
if (use_hw_aes) {
|
||
|
intel_aes_init(encrypt, keysize);
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
|
||
|
#if defined(RIJNDAEL_GENERATE_TABLES) || \
|
||
|
defined(RIJNDAEL_GENERATE_TABLES_MACRO)
|
||
|
if (rijndaelTables == NULL) {
|
||
|
if (PR_CallOnce(&coRTInit, init_rijndael_tables)
|
||
|
!= PR_SUCCESS) {
|
||
|
return SecFailure;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* Generate expanded key */
|
||
|
if (encrypt) {
|
||
|
if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
|
||
|
goto cleanup;
|
||
|
} else {
|
||
|
if (rijndael_invkey_expansion(cx, key, Nk) != SECSuccess)
|
||
|
goto cleanup;
|
||
|
}
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
cleanup:
|
||
|
return SECFailure;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* AES_CreateContext
|
||
|
*
|
||
|
* create a new context for Rijndael operations
|
||
|
*/
|
||
|
AESContext *
|
||
|
AES_CreateContext(const unsigned char *key, const unsigned char *iv,
|
||
|
int mode, int encrypt,
|
||
|
unsigned int keysize, unsigned int blocksize)
|
||
|
{
|
||
|
AESContext *cx = AES_AllocateContext();
|
||
|
if (cx) {
|
||
|
SECStatus rv = AES_InitContext(cx, key, keysize, iv, mode, encrypt,
|
||
|
blocksize);
|
||
|
if (rv != SECSuccess) {
|
||
|
AES_DestroyContext(cx, PR_TRUE);
|
||
|
cx = NULL;
|
||
|
}
|
||
|
}
|
||
|
return cx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* AES_DestroyContext
|
||
|
*
|
||
|
* Zero an AES cipher context. If freeit is true, also free the pointer
|
||
|
* to the context.
|
||
|
*/
|
||
|
void
|
||
|
AES_DestroyContext(AESContext *cx, PRBool freeit)
|
||
|
{
|
||
|
/* memset(cx, 0, sizeof *cx); */
|
||
|
if (freeit)
|
||
|
PORT_Free(cx);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* AES_Encrypt
|
||
|
*
|
||
|
* Encrypt an arbitrary-length buffer. The output buffer must already be
|
||
|
* allocated to at least inputLen.
|
||
|
*/
|
||
|
SECStatus
|
||
|
AES_Encrypt(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen)
|
||
|
{
|
||
|
int blocksize;
|
||
|
/* Check args */
|
||
|
if (cx == NULL || output == NULL || input == NULL) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
blocksize = 4 * cx->Nb;
|
||
|
if (inputLen % blocksize != 0) {
|
||
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
if (maxOutputLen < inputLen) {
|
||
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
*outputLen = inputLen;
|
||
|
return (*cx->worker)(cx, output, outputLen, maxOutputLen,
|
||
|
input, inputLen, blocksize);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* AES_Decrypt
|
||
|
*
|
||
|
* Decrypt and arbitrary-length buffer. The output buffer must already be
|
||
|
* allocated to at least inputLen.
|
||
|
*/
|
||
|
SECStatus
|
||
|
AES_Decrypt(AESContext *cx, unsigned char *output,
|
||
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
||
|
const unsigned char *input, unsigned int inputLen)
|
||
|
{
|
||
|
int blocksize;
|
||
|
/* Check args */
|
||
|
if (cx == NULL || output == NULL || input == NULL) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
blocksize = 4 * cx->Nb;
|
||
|
if (inputLen % blocksize != 0) {
|
||
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
if (maxOutputLen < inputLen) {
|
||
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
*outputLen = inputLen;
|
||
|
return (*cx->worker)(cx, output, outputLen, maxOutputLen,
|
||
|
input, inputLen, blocksize);
|
||
|
}
|