mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-09 09:20:15 +01:00
985 lines
30 KiB
C
985 lines
30 KiB
C
|
/* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is the Netscape security libraries.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* Netscape Communications Corporation.
|
||
|
* Portions created by the Initial Developer are Copyright (C) 1994-2000
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
*
|
||
|
* Alternatively, the contents of this file may be used under the terms of
|
||
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
||
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
||
|
* of those above. If you wish to allow use of your version of this file only
|
||
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
||
|
* use your version of this file under the terms of the MPL, indicate your
|
||
|
* decision by deleting the provisions above and replace them with the notice
|
||
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
||
|
* the provisions above, a recipient may use your version of this file under
|
||
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** */
|
||
|
|
||
|
/*
|
||
|
* RSA key generation, public key op, private key op.
|
||
|
*
|
||
|
* $Id: rsa.c,v 1.39 2009/02/03 05:34:41 julien.pierre.boogz%sun.com Exp $
|
||
|
*/
|
||
|
#ifdef FREEBL_NO_DEPEND
|
||
|
#include "stubs.h"
|
||
|
#endif
|
||
|
|
||
|
#include "secerr.h"
|
||
|
|
||
|
#include "prclist.h"
|
||
|
#include "nssilock.h"
|
||
|
#include "prinit.h"
|
||
|
#include "blapi.h"
|
||
|
#include "mpi.h"
|
||
|
#include "mpprime.h"
|
||
|
#include "mplogic.h"
|
||
|
#include "secmpi.h"
|
||
|
#include "secitem.h"
|
||
|
#include "blapii.h"
|
||
|
|
||
|
/*
|
||
|
** Number of times to attempt to generate a prime (p or q) from a random
|
||
|
** seed (the seed changes for each iteration).
|
||
|
*/
|
||
|
#define MAX_PRIME_GEN_ATTEMPTS 10
|
||
|
/*
|
||
|
** Number of times to attempt to generate a key. The primes p and q change
|
||
|
** for each attempt.
|
||
|
*/
|
||
|
#define MAX_KEY_GEN_ATTEMPTS 10
|
||
|
|
||
|
/* exponent should not be greater than modulus */
|
||
|
#define BAD_RSA_KEY_SIZE(modLen, expLen) \
|
||
|
((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \
|
||
|
(expLen) > RSA_MAX_EXPONENT_BITS/8)
|
||
|
|
||
|
/*
|
||
|
** RSABlindingParamsStr
|
||
|
**
|
||
|
** For discussion of Paul Kocher's timing attack against an RSA private key
|
||
|
** operation, see http://www.cryptography.com/timingattack/paper.html. The
|
||
|
** countermeasure to this attack, known as blinding, is also discussed in
|
||
|
** the Handbook of Applied Cryptography, 11.118-11.119.
|
||
|
*/
|
||
|
struct RSABlindingParamsStr
|
||
|
{
|
||
|
/* Blinding-specific parameters */
|
||
|
PRCList link; /* link to list of structs */
|
||
|
SECItem modulus; /* list element "key" */
|
||
|
mp_int f, g; /* Blinding parameters */
|
||
|
int counter; /* number of remaining uses of (f, g) */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
** RSABlindingParamsListStr
|
||
|
**
|
||
|
** List of key-specific blinding params. The arena holds the volatile pool
|
||
|
** of memory for each entry and the list itself. The lock is for list
|
||
|
** operations, in this case insertions and iterations, as well as control
|
||
|
** of the counter for each set of blinding parameters.
|
||
|
*/
|
||
|
struct RSABlindingParamsListStr
|
||
|
{
|
||
|
PZLock *lock; /* Lock for the list */
|
||
|
PRCList head; /* Pointer to the list */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
** The master blinding params list.
|
||
|
*/
|
||
|
static struct RSABlindingParamsListStr blindingParamsList = { 0 };
|
||
|
|
||
|
/* Number of times to reuse (f, g). Suggested by Paul Kocher */
|
||
|
#define RSA_BLINDING_PARAMS_MAX_REUSE 50
|
||
|
|
||
|
/* Global, allows optional use of blinding. On by default. */
|
||
|
/* Cannot be changed at the moment, due to thread-safety issues. */
|
||
|
static PRBool nssRSAUseBlinding = PR_TRUE;
|
||
|
|
||
|
static SECStatus
|
||
|
rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
|
||
|
unsigned int keySizeInBits)
|
||
|
{
|
||
|
mp_int n, d, phi;
|
||
|
mp_int psub1, qsub1, tmp;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
MP_DIGITS(&n) = 0;
|
||
|
MP_DIGITS(&d) = 0;
|
||
|
MP_DIGITS(&phi) = 0;
|
||
|
MP_DIGITS(&psub1) = 0;
|
||
|
MP_DIGITS(&qsub1) = 0;
|
||
|
MP_DIGITS(&tmp) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&n) );
|
||
|
CHECK_MPI_OK( mp_init(&d) );
|
||
|
CHECK_MPI_OK( mp_init(&phi) );
|
||
|
CHECK_MPI_OK( mp_init(&psub1) );
|
||
|
CHECK_MPI_OK( mp_init(&qsub1) );
|
||
|
CHECK_MPI_OK( mp_init(&tmp) );
|
||
|
/* 1. Compute n = p*q */
|
||
|
CHECK_MPI_OK( mp_mul(p, q, &n) );
|
||
|
/* verify that the modulus has the desired number of bits */
|
||
|
if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
|
||
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
||
|
rv = SECFailure;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
/* 2. Compute phi = (p-1)*(q-1) */
|
||
|
CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
|
||
|
CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
|
||
|
CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
|
||
|
/* 3. Compute d = e**-1 mod(phi) */
|
||
|
err = mp_invmod(e, &phi, &d);
|
||
|
/* Verify that phi(n) and e have no common divisors */
|
||
|
if (err != MP_OKAY) {
|
||
|
if (err == MP_UNDEF) {
|
||
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
||
|
err = MP_OKAY; /* to keep PORT_SetError from being called again */
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
goto cleanup;
|
||
|
}
|
||
|
MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
|
||
|
MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
|
||
|
/* 4. Compute exponent1 = d mod (p-1) */
|
||
|
CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
|
||
|
MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
|
||
|
/* 5. Compute exponent2 = d mod (q-1) */
|
||
|
CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
|
||
|
MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
|
||
|
/* 6. Compute coefficient = q**-1 mod p */
|
||
|
CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
|
||
|
MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
|
||
|
cleanup:
|
||
|
mp_clear(&n);
|
||
|
mp_clear(&d);
|
||
|
mp_clear(&phi);
|
||
|
mp_clear(&psub1);
|
||
|
mp_clear(&qsub1);
|
||
|
mp_clear(&tmp);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
static SECStatus
|
||
|
generate_prime(mp_int *prime, int primeLen)
|
||
|
{
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
unsigned long counter = 0;
|
||
|
int piter;
|
||
|
unsigned char *pb = NULL;
|
||
|
pb = PORT_Alloc(primeLen);
|
||
|
if (!pb) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
|
||
|
CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
|
||
|
pb[0] |= 0xC0; /* set two high-order bits */
|
||
|
pb[primeLen-1] |= 0x01; /* set low-order bit */
|
||
|
CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
|
||
|
err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
|
||
|
if (err != MP_NO)
|
||
|
goto cleanup;
|
||
|
/* keep going while err == MP_NO */
|
||
|
}
|
||
|
cleanup:
|
||
|
if (pb)
|
||
|
PORT_ZFree(pb, primeLen);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Generate and return a new RSA public and private key.
|
||
|
** Both keys are encoded in a single RSAPrivateKey structure.
|
||
|
** "cx" is the random number generator context
|
||
|
** "keySizeInBits" is the size of the key to be generated, in bits.
|
||
|
** 512, 1024, etc.
|
||
|
** "publicExponent" when not NULL is a pointer to some data that
|
||
|
** represents the public exponent to use. The data is a byte
|
||
|
** encoded integer, in "big endian" order.
|
||
|
*/
|
||
|
RSAPrivateKey *
|
||
|
RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
|
||
|
{
|
||
|
unsigned int primeLen;
|
||
|
mp_int p, q, e;
|
||
|
int kiter;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
int prerr = 0;
|
||
|
RSAPrivateKey *key = NULL;
|
||
|
PRArenaPool *arena = NULL;
|
||
|
/* Require key size to be a multiple of 16 bits. */
|
||
|
if (!publicExponent || keySizeInBits % 16 != 0 ||
|
||
|
BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* 1. Allocate arena & key */
|
||
|
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
|
||
|
if (!arena) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
return NULL;
|
||
|
}
|
||
|
key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
|
||
|
if (!key) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
PORT_FreeArena(arena, PR_TRUE);
|
||
|
return NULL;
|
||
|
}
|
||
|
key->arena = arena;
|
||
|
/* length of primes p and q (in bytes) */
|
||
|
primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
|
||
|
MP_DIGITS(&p) = 0;
|
||
|
MP_DIGITS(&q) = 0;
|
||
|
MP_DIGITS(&e) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&p) );
|
||
|
CHECK_MPI_OK( mp_init(&q) );
|
||
|
CHECK_MPI_OK( mp_init(&e) );
|
||
|
/* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
|
||
|
SECITEM_AllocItem(arena, &key->version, 1);
|
||
|
key->version.data[0] = 0;
|
||
|
/* 3. Set the public exponent */
|
||
|
SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
|
||
|
SECITEM_TO_MPINT(*publicExponent, &e);
|
||
|
kiter = 0;
|
||
|
do {
|
||
|
prerr = 0;
|
||
|
PORT_SetError(0);
|
||
|
CHECK_SEC_OK( generate_prime(&p, primeLen) );
|
||
|
CHECK_SEC_OK( generate_prime(&q, primeLen) );
|
||
|
/* Assure q < p */
|
||
|
if (mp_cmp(&p, &q) < 0)
|
||
|
mp_exch(&p, &q);
|
||
|
/* Attempt to use these primes to generate a key */
|
||
|
rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
|
||
|
if (rv == SECSuccess)
|
||
|
break; /* generated two good primes */
|
||
|
prerr = PORT_GetError();
|
||
|
kiter++;
|
||
|
/* loop until have primes */
|
||
|
} while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
|
||
|
if (prerr)
|
||
|
goto cleanup;
|
||
|
MPINT_TO_SECITEM(&p, &key->prime1, arena);
|
||
|
MPINT_TO_SECITEM(&q, &key->prime2, arena);
|
||
|
cleanup:
|
||
|
mp_clear(&p);
|
||
|
mp_clear(&q);
|
||
|
mp_clear(&e);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
if (rv && arena) {
|
||
|
PORT_FreeArena(arena, PR_TRUE);
|
||
|
key = NULL;
|
||
|
}
|
||
|
return key;
|
||
|
}
|
||
|
|
||
|
static unsigned int
|
||
|
rsa_modulusLen(SECItem *modulus)
|
||
|
{
|
||
|
unsigned char byteZero = modulus->data[0];
|
||
|
unsigned int modLen = modulus->len - !byteZero;
|
||
|
return modLen;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Perform a raw public-key operation
|
||
|
** Length of input and output buffers are equal to key's modulus len.
|
||
|
*/
|
||
|
SECStatus
|
||
|
RSA_PublicKeyOp(RSAPublicKey *key,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
unsigned int modLen, expLen, offset;
|
||
|
mp_int n, e, m, c;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
if (!key || !output || !input) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
MP_DIGITS(&n) = 0;
|
||
|
MP_DIGITS(&e) = 0;
|
||
|
MP_DIGITS(&m) = 0;
|
||
|
MP_DIGITS(&c) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&n) );
|
||
|
CHECK_MPI_OK( mp_init(&e) );
|
||
|
CHECK_MPI_OK( mp_init(&m) );
|
||
|
CHECK_MPI_OK( mp_init(&c) );
|
||
|
modLen = rsa_modulusLen(&key->modulus);
|
||
|
expLen = rsa_modulusLen(&key->publicExponent);
|
||
|
/* 1. Obtain public key (n, e) */
|
||
|
if (BAD_RSA_KEY_SIZE(modLen, expLen)) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
||
|
rv = SECFailure;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
SECITEM_TO_MPINT(key->modulus, &n);
|
||
|
SECITEM_TO_MPINT(key->publicExponent, &e);
|
||
|
if (e.used > n.used) {
|
||
|
/* exponent should not be greater than modulus */
|
||
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
||
|
rv = SECFailure;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
/* 2. check input out of range (needs to be in range [0..n-1]) */
|
||
|
offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
|
||
|
if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
|
||
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
||
|
rv = SECFailure;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
/* 2 bis. Represent message as integer in range [0..n-1] */
|
||
|
CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
|
||
|
/* 3. Compute c = m**e mod n */
|
||
|
#ifdef USE_MPI_EXPT_D
|
||
|
/* XXX see which is faster */
|
||
|
if (MP_USED(&e) == 1) {
|
||
|
CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
|
||
|
} else
|
||
|
#endif
|
||
|
CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
|
||
|
/* 4. result c is ciphertext */
|
||
|
err = mp_to_fixlen_octets(&c, output, modLen);
|
||
|
if (err >= 0) err = MP_OKAY;
|
||
|
cleanup:
|
||
|
mp_clear(&n);
|
||
|
mp_clear(&e);
|
||
|
mp_clear(&m);
|
||
|
mp_clear(&c);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** RSA Private key operation (no CRT).
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
|
||
|
unsigned int modLen)
|
||
|
{
|
||
|
mp_int d;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
MP_DIGITS(&d) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&d) );
|
||
|
SECITEM_TO_MPINT(key->privateExponent, &d);
|
||
|
/* 1. m = c**d mod n */
|
||
|
CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
|
||
|
cleanup:
|
||
|
mp_clear(&d);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** RSA Private key operation using CRT.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c)
|
||
|
{
|
||
|
mp_int p, q, d_p, d_q, qInv;
|
||
|
mp_int m1, m2, h, ctmp;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
MP_DIGITS(&p) = 0;
|
||
|
MP_DIGITS(&q) = 0;
|
||
|
MP_DIGITS(&d_p) = 0;
|
||
|
MP_DIGITS(&d_q) = 0;
|
||
|
MP_DIGITS(&qInv) = 0;
|
||
|
MP_DIGITS(&m1) = 0;
|
||
|
MP_DIGITS(&m2) = 0;
|
||
|
MP_DIGITS(&h) = 0;
|
||
|
MP_DIGITS(&ctmp) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&p) );
|
||
|
CHECK_MPI_OK( mp_init(&q) );
|
||
|
CHECK_MPI_OK( mp_init(&d_p) );
|
||
|
CHECK_MPI_OK( mp_init(&d_q) );
|
||
|
CHECK_MPI_OK( mp_init(&qInv) );
|
||
|
CHECK_MPI_OK( mp_init(&m1) );
|
||
|
CHECK_MPI_OK( mp_init(&m2) );
|
||
|
CHECK_MPI_OK( mp_init(&h) );
|
||
|
CHECK_MPI_OK( mp_init(&ctmp) );
|
||
|
/* copy private key parameters into mp integers */
|
||
|
SECITEM_TO_MPINT(key->prime1, &p); /* p */
|
||
|
SECITEM_TO_MPINT(key->prime2, &q); /* q */
|
||
|
SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
|
||
|
SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */
|
||
|
SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
|
||
|
/* 1. m1 = c**d_p mod p */
|
||
|
CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
|
||
|
CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
|
||
|
/* 2. m2 = c**d_q mod q */
|
||
|
CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
|
||
|
CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
|
||
|
/* 3. h = (m1 - m2) * qInv mod p */
|
||
|
CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
|
||
|
CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
|
||
|
/* 4. m = m2 + h * q */
|
||
|
CHECK_MPI_OK( mp_mul(&h, &q, m) );
|
||
|
CHECK_MPI_OK( mp_add(m, &m2, m) );
|
||
|
cleanup:
|
||
|
mp_clear(&p);
|
||
|
mp_clear(&q);
|
||
|
mp_clear(&d_p);
|
||
|
mp_clear(&d_q);
|
||
|
mp_clear(&qInv);
|
||
|
mp_clear(&m1);
|
||
|
mp_clear(&m2);
|
||
|
mp_clear(&h);
|
||
|
mp_clear(&ctmp);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in:
|
||
|
** "On the Importance of Eliminating Errors in Cryptographic Computations",
|
||
|
** http://theory.stanford.edu/~dabo/papers/faults.ps.gz
|
||
|
**
|
||
|
** As a defense against the attack, carry out the private key operation,
|
||
|
** followed up with a public key operation to invert the result.
|
||
|
** Verify that result against the input.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c)
|
||
|
{
|
||
|
mp_int n, e, v;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
MP_DIGITS(&n) = 0;
|
||
|
MP_DIGITS(&e) = 0;
|
||
|
MP_DIGITS(&v) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&n) );
|
||
|
CHECK_MPI_OK( mp_init(&e) );
|
||
|
CHECK_MPI_OK( mp_init(&v) );
|
||
|
CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
|
||
|
SECITEM_TO_MPINT(key->modulus, &n);
|
||
|
SECITEM_TO_MPINT(key->publicExponent, &e);
|
||
|
/* Perform a public key operation v = m ** e mod n */
|
||
|
CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
|
||
|
if (mp_cmp(&v, c) != 0) {
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
cleanup:
|
||
|
mp_clear(&n);
|
||
|
mp_clear(&e);
|
||
|
mp_clear(&v);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
static PRCallOnceType coBPInit = { 0, 0, 0 };
|
||
|
static PRStatus
|
||
|
init_blinding_params_list(void)
|
||
|
{
|
||
|
blindingParamsList.lock = PZ_NewLock(nssILockOther);
|
||
|
if (!blindingParamsList.lock) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
return PR_FAILURE;
|
||
|
}
|
||
|
PR_INIT_CLIST(&blindingParamsList.head);
|
||
|
return PR_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
generate_blinding_params(struct RSABlindingParamsStr *rsabp,
|
||
|
RSAPrivateKey *key, mp_int *n, unsigned int modLen)
|
||
|
{
|
||
|
SECStatus rv = SECSuccess;
|
||
|
mp_int e, k;
|
||
|
mp_err err = MP_OKAY;
|
||
|
unsigned char *kb = NULL;
|
||
|
MP_DIGITS(&e) = 0;
|
||
|
MP_DIGITS(&k) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&e) );
|
||
|
CHECK_MPI_OK( mp_init(&k) );
|
||
|
SECITEM_TO_MPINT(key->publicExponent, &e);
|
||
|
/* generate random k < n */
|
||
|
kb = PORT_Alloc(modLen);
|
||
|
if (!kb) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
|
||
|
CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
|
||
|
/* k < n */
|
||
|
CHECK_MPI_OK( mp_mod(&k, n, &k) );
|
||
|
/* f = k**e mod n */
|
||
|
CHECK_MPI_OK( mp_exptmod(&k, &e, n, &rsabp->f) );
|
||
|
/* g = k**-1 mod n */
|
||
|
CHECK_MPI_OK( mp_invmod(&k, n, &rsabp->g) );
|
||
|
/* Initialize the counter for this (f, g) */
|
||
|
rsabp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
|
||
|
cleanup:
|
||
|
if (kb)
|
||
|
PORT_ZFree(kb, modLen);
|
||
|
mp_clear(&k);
|
||
|
mp_clear(&e);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
init_blinding_params(struct RSABlindingParamsStr *rsabp, RSAPrivateKey *key,
|
||
|
mp_int *n, unsigned int modLen)
|
||
|
{
|
||
|
SECStatus rv = SECSuccess;
|
||
|
mp_err err = MP_OKAY;
|
||
|
MP_DIGITS(&rsabp->f) = 0;
|
||
|
MP_DIGITS(&rsabp->g) = 0;
|
||
|
/* initialize blinding parameters */
|
||
|
CHECK_MPI_OK( mp_init(&rsabp->f) );
|
||
|
CHECK_MPI_OK( mp_init(&rsabp->g) );
|
||
|
/* List elements are keyed using the modulus */
|
||
|
SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
|
||
|
CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
|
||
|
return SECSuccess;
|
||
|
cleanup:
|
||
|
mp_clear(&rsabp->f);
|
||
|
mp_clear(&rsabp->g);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
|
||
|
mp_int *f, mp_int *g)
|
||
|
{
|
||
|
SECStatus rv = SECSuccess;
|
||
|
mp_err err = MP_OKAY;
|
||
|
int cmp;
|
||
|
PRCList *el;
|
||
|
struct RSABlindingParamsStr *rsabp = NULL;
|
||
|
/* Init the list if neccessary (the init function is only called once!) */
|
||
|
if (blindingParamsList.lock == NULL) {
|
||
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
/* Acquire the list lock */
|
||
|
PZ_Lock(blindingParamsList.lock);
|
||
|
/* Walk the list looking for the private key */
|
||
|
for (el = PR_NEXT_LINK(&blindingParamsList.head);
|
||
|
el != &blindingParamsList.head;
|
||
|
el = PR_NEXT_LINK(el)) {
|
||
|
rsabp = (struct RSABlindingParamsStr *)el;
|
||
|
cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
|
||
|
if (cmp == 0) {
|
||
|
/* Check the usage counter for the parameters */
|
||
|
if (--rsabp->counter <= 0) {
|
||
|
/* Regenerate the blinding parameters */
|
||
|
CHECK_SEC_OK( generate_blinding_params(rsabp, key, n, modLen) );
|
||
|
}
|
||
|
/* Return the parameters */
|
||
|
CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
|
||
|
CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
|
||
|
/* Now that the params are located, release the list lock. */
|
||
|
PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
|
||
|
return SECSuccess;
|
||
|
} else if (cmp > 0) {
|
||
|
/* The key is not in the list. Break to param creation. */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/* At this point, the key is not in the list. el should point to the
|
||
|
** list element that this key should be inserted before. NOTE: the list
|
||
|
** lock is still held, so there cannot be a race condition here.
|
||
|
*/
|
||
|
rsabp = (struct RSABlindingParamsStr *)
|
||
|
PORT_ZAlloc(sizeof(struct RSABlindingParamsStr));
|
||
|
if (!rsabp) {
|
||
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
/* Initialize the list pointer for the element */
|
||
|
PR_INIT_CLIST(&rsabp->link);
|
||
|
/* Initialize the blinding parameters
|
||
|
** This ties up the list lock while doing some heavy, element-specific
|
||
|
** operations, but we don't want to insert the element until it is valid,
|
||
|
** which requires computing the blinding params. If this proves costly,
|
||
|
** it could be done after the list lock is released, and then if it fails
|
||
|
** the lock would have to be reobtained and the invalid element removed.
|
||
|
*/
|
||
|
rv = init_blinding_params(rsabp, key, n, modLen);
|
||
|
if (rv != SECSuccess) {
|
||
|
PORT_ZFree(rsabp, sizeof(struct RSABlindingParamsStr));
|
||
|
goto cleanup;
|
||
|
}
|
||
|
/* Insert the new element into the list
|
||
|
** If inserting in the middle of the list, el points to the link
|
||
|
** to insert before. Otherwise, the link needs to be appended to
|
||
|
** the end of the list, which is the same as inserting before the
|
||
|
** head (since el would have looped back to the head).
|
||
|
*/
|
||
|
PR_INSERT_BEFORE(&rsabp->link, el);
|
||
|
/* Return the parameters */
|
||
|
CHECK_MPI_OK( mp_copy(&rsabp->f, f) );
|
||
|
CHECK_MPI_OK( mp_copy(&rsabp->g, g) );
|
||
|
/* Release the list lock */
|
||
|
PZ_Unlock(blindingParamsList.lock); /* XXX when fails? */
|
||
|
return SECSuccess;
|
||
|
cleanup:
|
||
|
/* It is possible to reach this after the lock is already released.
|
||
|
** Ignore the error in that case.
|
||
|
*/
|
||
|
PZ_Unlock(blindingParamsList.lock);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return SECFailure;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Perform a raw private-key operation
|
||
|
** Length of input and output buffers are equal to key's modulus len.
|
||
|
*/
|
||
|
static SECStatus
|
||
|
rsa_PrivateKeyOp(RSAPrivateKey *key,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input,
|
||
|
PRBool check)
|
||
|
{
|
||
|
unsigned int modLen;
|
||
|
unsigned int offset;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
mp_err err;
|
||
|
mp_int n, c, m;
|
||
|
mp_int f, g;
|
||
|
if (!key || !output || !input) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
/* check input out of range (needs to be in range [0..n-1]) */
|
||
|
modLen = rsa_modulusLen(&key->modulus);
|
||
|
offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
|
||
|
if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
|
||
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
MP_DIGITS(&n) = 0;
|
||
|
MP_DIGITS(&c) = 0;
|
||
|
MP_DIGITS(&m) = 0;
|
||
|
MP_DIGITS(&f) = 0;
|
||
|
MP_DIGITS(&g) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&n) );
|
||
|
CHECK_MPI_OK( mp_init(&c) );
|
||
|
CHECK_MPI_OK( mp_init(&m) );
|
||
|
CHECK_MPI_OK( mp_init(&f) );
|
||
|
CHECK_MPI_OK( mp_init(&g) );
|
||
|
SECITEM_TO_MPINT(key->modulus, &n);
|
||
|
OCTETS_TO_MPINT(input, &c, modLen);
|
||
|
/* If blinding, compute pre-image of ciphertext by multiplying by
|
||
|
** blinding factor
|
||
|
*/
|
||
|
if (nssRSAUseBlinding) {
|
||
|
CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
|
||
|
/* c' = c*f mod n */
|
||
|
CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
|
||
|
}
|
||
|
/* Do the private key operation m = c**d mod n */
|
||
|
if ( key->prime1.len == 0 ||
|
||
|
key->prime2.len == 0 ||
|
||
|
key->exponent1.len == 0 ||
|
||
|
key->exponent2.len == 0 ||
|
||
|
key->coefficient.len == 0) {
|
||
|
CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
|
||
|
} else if (check) {
|
||
|
CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
|
||
|
} else {
|
||
|
CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
|
||
|
}
|
||
|
/* If blinding, compute post-image of plaintext by multiplying by
|
||
|
** blinding factor
|
||
|
*/
|
||
|
if (nssRSAUseBlinding) {
|
||
|
/* m = m'*g mod n */
|
||
|
CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
|
||
|
}
|
||
|
err = mp_to_fixlen_octets(&m, output, modLen);
|
||
|
if (err >= 0) err = MP_OKAY;
|
||
|
cleanup:
|
||
|
mp_clear(&n);
|
||
|
mp_clear(&c);
|
||
|
mp_clear(&m);
|
||
|
mp_clear(&f);
|
||
|
mp_clear(&g);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
SECStatus
|
||
|
RSA_PrivateKeyOp(RSAPrivateKey *key,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
|
||
|
}
|
||
|
|
||
|
SECStatus
|
||
|
RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
|
||
|
unsigned char *output,
|
||
|
const unsigned char *input)
|
||
|
{
|
||
|
return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
|
||
|
}
|
||
|
|
||
|
static SECStatus
|
||
|
swap_in_key_value(PRArenaPool *arena, mp_int *mpval, SECItem *buffer)
|
||
|
{
|
||
|
int len;
|
||
|
mp_err err = MP_OKAY;
|
||
|
memset(buffer->data, 0, buffer->len);
|
||
|
len = mp_unsigned_octet_size(mpval);
|
||
|
if (len <= 0) return SECFailure;
|
||
|
if ((unsigned int)len <= buffer->len) {
|
||
|
/* The new value is no longer than the old buffer, so use it */
|
||
|
err = mp_to_unsigned_octets(mpval, buffer->data, len);
|
||
|
if (err >= 0) err = MP_OKAY;
|
||
|
buffer->len = len;
|
||
|
} else if (arena) {
|
||
|
/* The new value is longer, but working within an arena */
|
||
|
(void)SECITEM_AllocItem(arena, buffer, len);
|
||
|
err = mp_to_unsigned_octets(mpval, buffer->data, len);
|
||
|
if (err >= 0) err = MP_OKAY;
|
||
|
} else {
|
||
|
/* The new value is longer, no arena, can't handle this key */
|
||
|
return SECFailure;
|
||
|
}
|
||
|
return (err == MP_OKAY) ? SECSuccess : SECFailure;
|
||
|
}
|
||
|
|
||
|
SECStatus
|
||
|
RSA_PrivateKeyCheck(RSAPrivateKey *key)
|
||
|
{
|
||
|
mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
|
||
|
mp_err err = MP_OKAY;
|
||
|
SECStatus rv = SECSuccess;
|
||
|
MP_DIGITS(&n) = 0;
|
||
|
MP_DIGITS(&psub1)= 0;
|
||
|
MP_DIGITS(&qsub1)= 0;
|
||
|
MP_DIGITS(&e) = 0;
|
||
|
MP_DIGITS(&d) = 0;
|
||
|
MP_DIGITS(&d_p) = 0;
|
||
|
MP_DIGITS(&d_q) = 0;
|
||
|
MP_DIGITS(&qInv) = 0;
|
||
|
MP_DIGITS(&res) = 0;
|
||
|
CHECK_MPI_OK( mp_init(&n) );
|
||
|
CHECK_MPI_OK( mp_init(&p) );
|
||
|
CHECK_MPI_OK( mp_init(&q) );
|
||
|
CHECK_MPI_OK( mp_init(&psub1));
|
||
|
CHECK_MPI_OK( mp_init(&qsub1));
|
||
|
CHECK_MPI_OK( mp_init(&e) );
|
||
|
CHECK_MPI_OK( mp_init(&d) );
|
||
|
CHECK_MPI_OK( mp_init(&d_p) );
|
||
|
CHECK_MPI_OK( mp_init(&d_q) );
|
||
|
CHECK_MPI_OK( mp_init(&qInv) );
|
||
|
CHECK_MPI_OK( mp_init(&res) );
|
||
|
SECITEM_TO_MPINT(key->modulus, &n);
|
||
|
SECITEM_TO_MPINT(key->prime1, &p);
|
||
|
SECITEM_TO_MPINT(key->prime2, &q);
|
||
|
SECITEM_TO_MPINT(key->publicExponent, &e);
|
||
|
SECITEM_TO_MPINT(key->privateExponent, &d);
|
||
|
SECITEM_TO_MPINT(key->exponent1, &d_p);
|
||
|
SECITEM_TO_MPINT(key->exponent2, &d_q);
|
||
|
SECITEM_TO_MPINT(key->coefficient, &qInv);
|
||
|
/* p > q */
|
||
|
if (mp_cmp(&p, &q) <= 0) {
|
||
|
/* mind the p's and q's (and d_p's and d_q's) */
|
||
|
SECItem tmp;
|
||
|
mp_exch(&p, &q);
|
||
|
mp_exch(&d_p,&d_q);
|
||
|
tmp = key->prime1;
|
||
|
key->prime1 = key->prime2;
|
||
|
key->prime2 = tmp;
|
||
|
tmp = key->exponent1;
|
||
|
key->exponent1 = key->exponent2;
|
||
|
key->exponent2 = tmp;
|
||
|
}
|
||
|
#define VERIFY_MPI_EQUAL(m1, m2) \
|
||
|
if (mp_cmp(m1, m2) != 0) { \
|
||
|
rv = SECFailure; \
|
||
|
goto cleanup; \
|
||
|
}
|
||
|
#define VERIFY_MPI_EQUAL_1(m) \
|
||
|
if (mp_cmp_d(m, 1) != 0) { \
|
||
|
rv = SECFailure; \
|
||
|
goto cleanup; \
|
||
|
}
|
||
|
/*
|
||
|
* The following errors cannot be recovered from.
|
||
|
*/
|
||
|
/* n == p * q */
|
||
|
CHECK_MPI_OK( mp_mul(&p, &q, &res) );
|
||
|
VERIFY_MPI_EQUAL(&res, &n);
|
||
|
/* gcd(e, p-1) == 1 */
|
||
|
CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
|
||
|
CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
|
||
|
VERIFY_MPI_EQUAL_1(&res);
|
||
|
/* gcd(e, q-1) == 1 */
|
||
|
CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
|
||
|
CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
|
||
|
VERIFY_MPI_EQUAL_1(&res);
|
||
|
/* d*e == 1 mod p-1 */
|
||
|
CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
|
||
|
VERIFY_MPI_EQUAL_1(&res);
|
||
|
/* d*e == 1 mod q-1 */
|
||
|
CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
|
||
|
VERIFY_MPI_EQUAL_1(&res);
|
||
|
/*
|
||
|
* The following errors can be recovered from.
|
||
|
*/
|
||
|
/* d_p == d mod p-1 */
|
||
|
CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
|
||
|
if (mp_cmp(&d_p, &res) != 0) {
|
||
|
/* swap in the correct value */
|
||
|
CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) );
|
||
|
}
|
||
|
/* d_q == d mod q-1 */
|
||
|
CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
|
||
|
if (mp_cmp(&d_q, &res) != 0) {
|
||
|
/* swap in the correct value */
|
||
|
CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) );
|
||
|
}
|
||
|
/* q * q**-1 == 1 mod p */
|
||
|
CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
|
||
|
if (mp_cmp_d(&res, 1) != 0) {
|
||
|
/* compute the correct value */
|
||
|
CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) );
|
||
|
CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) );
|
||
|
}
|
||
|
cleanup:
|
||
|
mp_clear(&n);
|
||
|
mp_clear(&p);
|
||
|
mp_clear(&q);
|
||
|
mp_clear(&psub1);
|
||
|
mp_clear(&qsub1);
|
||
|
mp_clear(&e);
|
||
|
mp_clear(&d);
|
||
|
mp_clear(&d_p);
|
||
|
mp_clear(&d_q);
|
||
|
mp_clear(&qInv);
|
||
|
mp_clear(&res);
|
||
|
if (err) {
|
||
|
MP_TO_SEC_ERROR(err);
|
||
|
rv = SECFailure;
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
static SECStatus RSA_Init(void)
|
||
|
{
|
||
|
if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
|
||
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
||
|
return SECFailure;
|
||
|
}
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
|
||
|
SECStatus BL_Init(void)
|
||
|
{
|
||
|
return RSA_Init();
|
||
|
}
|
||
|
|
||
|
/* cleanup at shutdown */
|
||
|
void RSA_Cleanup(void)
|
||
|
{
|
||
|
if (!coBPInit.initialized)
|
||
|
return;
|
||
|
|
||
|
while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head))
|
||
|
{
|
||
|
struct RSABlindingParamsStr * rsabp = (struct RSABlindingParamsStr *)
|
||
|
PR_LIST_HEAD(&blindingParamsList.head);
|
||
|
PR_REMOVE_LINK(&rsabp->link);
|
||
|
mp_clear(&rsabp->f);
|
||
|
mp_clear(&rsabp->g);
|
||
|
SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
|
||
|
PORT_Free(rsabp);
|
||
|
}
|
||
|
|
||
|
if (blindingParamsList.lock)
|
||
|
{
|
||
|
SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock));
|
||
|
blindingParamsList.lock = NULL;
|
||
|
}
|
||
|
|
||
|
coBPInit.initialized = 0;
|
||
|
coBPInit.inProgress = 0;
|
||
|
coBPInit.status = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* need a central place for this function to free up all the memory that
|
||
|
* free_bl may have allocated along the way. Currently only RSA does this,
|
||
|
* so I've put it here for now.
|
||
|
*/
|
||
|
void BL_Cleanup(void)
|
||
|
{
|
||
|
RSA_Cleanup();
|
||
|
}
|
||
|
|
||
|
PRBool parentForkedAfterC_Initialize;
|
||
|
|
||
|
/*
|
||
|
* Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms.
|
||
|
*/
|
||
|
void BL_SetForkState(PRBool forked)
|
||
|
{
|
||
|
parentForkedAfterC_Initialize = forked;
|
||
|
}
|
||
|
|