/* * loader.c - load platform dependent DSO containing freebl implementation. * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape security libraries. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Dr Vipul Gupta , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* $Id: loader.c,v 1.44 2009/03/29 03:45:32 wtc%google.com Exp $ */ #include "loader.h" #include "prmem.h" #include "prerror.h" #include "prinit.h" #include "prenv.h" static const char* default_name = SHLIB_PREFIX"freebl"SHLIB_VERSION"."SHLIB_SUFFIX; /* getLibName() returns the name of the library to load. */ #if defined(SOLARIS) && defined(__sparc) #include #include #include #if defined(NSS_USE_64) const static char fpu_hybrid_shared_lib[] = "libfreebl_64fpu_3.so"; const static char int_hybrid_shared_lib[] = "libfreebl_64int_3.so"; const static char non_hybrid_shared_lib[] = "libfreebl_64fpu_3.so"; const static char int_hybrid_isa[] = "sparcv9"; const static char fpu_hybrid_isa[] = "sparcv9+vis"; #else const static char fpu_hybrid_shared_lib[] = "libfreebl_32fpu_3.so"; const static char int_hybrid_shared_lib[] = "libfreebl_32int64_3.so"; const static char non_hybrid_shared_lib[] = "libfreebl_32int_3.so"; const static char int_hybrid_isa[] = "sparcv8plus"; const static char fpu_hybrid_isa[] = "sparcv8plus+vis"; #endif static const char * getLibName(void) { char * found_int_hybrid; char * found_fpu_hybrid; long buflen; char buf[256]; buflen = sysinfo(SI_ISALIST, buf, sizeof buf); if (buflen <= 0) return NULL; /* sysinfo output is always supposed to be NUL terminated, but ... */ if (buflen < sizeof buf) buf[buflen] = '\0'; else buf[(sizeof buf) - 1] = '\0'; /* The ISA list is a space separated string of names of ISAs and * ISA extensions, in order of decreasing performance. * There are two different ISAs with which NSS's crypto code can be * accelerated. If both are in the list, we take the first one. * If one is in the list, we use it, and if neither then we use * the base unaccelerated code. */ found_int_hybrid = strstr(buf, int_hybrid_isa); found_fpu_hybrid = strstr(buf, fpu_hybrid_isa); if (found_fpu_hybrid && (!found_int_hybrid || (found_int_hybrid - found_fpu_hybrid) >= 0)) { return fpu_hybrid_shared_lib; } if (found_int_hybrid) { return int_hybrid_shared_lib; } return non_hybrid_shared_lib; } #elif defined(HPUX) && !defined(NSS_USE_64) && !defined(__ia64) /* This code tests to see if we're running on a PA2.x CPU. ** It returns true (1) if so, and false (0) otherwise. */ static const char * getLibName(void) { long cpu = sysconf(_SC_CPU_VERSION); return (cpu == CPU_PA_RISC2_0) ? "libfreebl_32fpu_3.sl" : "libfreebl_32int32_3.sl" ; } #else /* default case, for platforms/ABIs that have only one freebl shared lib. */ static const char * getLibName(void) { return default_name; } #endif #include "prio.h" #include "prprf.h" #include #include "prsystem.h" static const char *NameOfThisSharedLib = SHLIB_PREFIX"softokn"SOFTOKEN_SHLIB_VERSION"."SHLIB_SUFFIX; static PRLibrary* blLib; #define LSB(x) ((x)&0xff) #define MSB(x) ((x)>>8) static const FREEBLVector *vector; static const char *libraryName = NULL; #include "genload.c" /* This function must be run only once. */ /* determine if hybrid platform, then actually load the DSO. */ static PRStatus freebl_LoadDSO( void ) { PRLibrary * handle; const char * name = getLibName(); if (!name) { PR_SetError(PR_LOAD_LIBRARY_ERROR, 0); return PR_FAILURE; } handle = loader_LoadLibrary(name); if (handle) { PRFuncPtr address = PR_FindFunctionSymbol(handle, "FREEBL_GetVector"); PRStatus status; if (address) { FREEBLGetVectorFn * getVector = (FREEBLGetVectorFn *)address; const FREEBLVector * dsoVector = getVector(); if (dsoVector) { unsigned short dsoVersion = dsoVector->version; unsigned short myVersion = FREEBL_VERSION; if (MSB(dsoVersion) == MSB(myVersion) && LSB(dsoVersion) >= LSB(myVersion) && dsoVector->length >= sizeof(FREEBLVector)) { vector = dsoVector; libraryName = name; blLib = handle; return PR_SUCCESS; } } } status = PR_UnloadLibrary(handle); PORT_Assert(PR_SUCCESS == status); } return PR_FAILURE; } static const PRCallOnceType pristineCallOnce; static PRCallOnceType loadFreeBLOnce; static PRStatus freebl_RunLoaderOnce( void ) { PRStatus status; status = PR_CallOnce(&loadFreeBLOnce, &freebl_LoadDSO); return status; } SECStatus BL_Init(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_BL_Init)(); } RSAPrivateKey * RSA_NewKey(int keySizeInBits, SECItem * publicExponent) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RSA_NewKey)(keySizeInBits, publicExponent); } SECStatus RSA_PublicKeyOp(RSAPublicKey * key, unsigned char * output, const unsigned char * input) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RSA_PublicKeyOp)(key, output, input); } SECStatus RSA_PrivateKeyOp(RSAPrivateKey * key, unsigned char * output, const unsigned char * input) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RSA_PrivateKeyOp)(key, output, input); } SECStatus RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, unsigned char *output, const unsigned char *input) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RSA_PrivateKeyOpDoubleChecked)(key, output, input); } SECStatus RSA_PrivateKeyCheck(RSAPrivateKey *key) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RSA_PrivateKeyCheck)(key); } SECStatus DSA_NewKey(const PQGParams * params, DSAPrivateKey ** privKey) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DSA_NewKey)(params, privKey); } SECStatus DSA_SignDigest(DSAPrivateKey * key, SECItem * signature, const SECItem * digest) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DSA_SignDigest)( key, signature, digest); } SECStatus DSA_VerifyDigest(DSAPublicKey * key, const SECItem * signature, const SECItem * digest) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DSA_VerifyDigest)( key, signature, digest); } SECStatus DSA_NewKeyFromSeed(const PQGParams *params, const unsigned char * seed, DSAPrivateKey **privKey) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DSA_NewKeyFromSeed)(params, seed, privKey); } SECStatus DSA_SignDigestWithSeed(DSAPrivateKey * key, SECItem * signature, const SECItem * digest, const unsigned char * seed) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DSA_SignDigestWithSeed)( key, signature, digest, seed); } SECStatus DH_GenParam(int primeLen, DHParams ** params) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DH_GenParam)(primeLen, params); } SECStatus DH_NewKey(DHParams * params, DHPrivateKey ** privKey) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DH_NewKey)( params, privKey); } SECStatus DH_Derive(SECItem * publicValue, SECItem * prime, SECItem * privateValue, SECItem * derivedSecret, unsigned int maxOutBytes) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DH_Derive)( publicValue, prime, privateValue, derivedSecret, maxOutBytes); } SECStatus KEA_Derive(SECItem *prime, SECItem *public1, SECItem *public2, SECItem *private1, SECItem *private2, SECItem *derivedSecret) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_KEA_Derive)(prime, public1, public2, private1, private2, derivedSecret); } PRBool KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return PR_FALSE; return (vector->p_KEA_Verify)(Y, prime, subPrime); } RC4Context * RC4_CreateContext(const unsigned char *key, int len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RC4_CreateContext)(key, len); } void RC4_DestroyContext(RC4Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_RC4_DestroyContext)(cx, freeit); } SECStatus RC4_Encrypt(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC4_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC4_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } RC2Context * RC2_CreateContext(const unsigned char *key, unsigned int len, const unsigned char *iv, int mode, unsigned effectiveKeyLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RC2_CreateContext)(key, len, iv, mode, effectiveKeyLen); } void RC2_DestroyContext(RC2Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_RC2_DestroyContext)(cx, freeit); } SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC2_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC2_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } RC5Context * RC5_CreateContext(const SECItem *key, unsigned int rounds, unsigned int wordSize, const unsigned char *iv, int mode) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RC5_CreateContext)(key, rounds, wordSize, iv, mode); } void RC5_DestroyContext(RC5Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_RC5_DestroyContext)(cx, freeit); } SECStatus RC5_Encrypt(RC5Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC5_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus RC5_Decrypt(RC5Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC5_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } DESContext * DES_CreateContext(const unsigned char *key, const unsigned char *iv, int mode, PRBool encrypt) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_DES_CreateContext)(key, iv, mode, encrypt); } void DES_DestroyContext(DESContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_DES_DestroyContext)(cx, freeit); } SECStatus DES_Encrypt(DESContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DES_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus DES_Decrypt(DESContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DES_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SEEDContext * SEED_CreateContext(const unsigned char *key, const unsigned char *iv, int mode, PRBool encrypt) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SEED_CreateContext)(key, iv, mode, encrypt); } void SEED_DestroyContext(SEEDContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_SEED_DestroyContext)(cx, freeit); } SECStatus SEED_Encrypt(SEEDContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SEED_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus SEED_Decrypt(SEEDContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SEED_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } AESContext * AES_CreateContext(const unsigned char *key, const unsigned char *iv, int mode, int encrypt, unsigned int keylen, unsigned int blocklen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_AES_CreateContext)(key, iv, mode, encrypt, keylen, blocklen); } void AES_DestroyContext(AESContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_AES_DestroyContext)(cx, freeit); } SECStatus AES_Encrypt(AESContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_AES_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus AES_Decrypt(AESContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_AES_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus MD5_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_MD5_Hash)(dest, src); } SECStatus MD5_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_MD5_HashBuf)(dest, src, src_length); } MD5Context * MD5_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_MD5_NewContext)(); } void MD5_DestroyContext(MD5Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD5_DestroyContext)(cx, freeit); } void MD5_Begin(MD5Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD5_Begin)(cx); } void MD5_Update(MD5Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD5_Update)(cx, input, inputLen); } void MD5_End(MD5Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD5_End)(cx, digest, digestLen, maxDigestLen); } unsigned int MD5_FlattenSize(MD5Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_MD5_FlattenSize)(cx); } SECStatus MD5_Flatten(MD5Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_MD5_Flatten)(cx, space); } MD5Context * MD5_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_MD5_Resurrect)(space, arg); } void MD5_TraceState(MD5Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_MD5_TraceState)(cx); } SECStatus MD2_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_MD2_Hash)(dest, src); } MD2Context * MD2_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_MD2_NewContext)(); } void MD2_DestroyContext(MD2Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_MD2_DestroyContext)(cx, freeit); } void MD2_Begin(MD2Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_MD2_Begin)(cx); } void MD2_Update(MD2Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_MD2_Update)(cx, input, inputLen); } void MD2_End(MD2Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_MD2_End)(cx, digest, digestLen, maxDigestLen); } unsigned int MD2_FlattenSize(MD2Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_MD2_FlattenSize)(cx); } SECStatus MD2_Flatten(MD2Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_MD2_Flatten)(cx, space); } MD2Context * MD2_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_MD2_Resurrect)(space, arg); } SECStatus SHA1_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA1_Hash)(dest, src); } SECStatus SHA1_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA1_HashBuf)(dest, src, src_length); } SHA1Context * SHA1_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA1_NewContext)(); } void SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA1_DestroyContext)(cx, freeit); } void SHA1_Begin(SHA1Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA1_Begin)(cx); } void SHA1_Update(SHA1Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA1_Update)(cx, input, inputLen); } void SHA1_End(SHA1Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA1_End)(cx, digest, digestLen, maxDigestLen); } void SHA1_TraceState(SHA1Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA1_TraceState)(cx); } unsigned int SHA1_FlattenSize(SHA1Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_SHA1_FlattenSize)(cx); } SECStatus SHA1_Flatten(SHA1Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA1_Flatten)(cx, space); } SHA1Context * SHA1_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA1_Resurrect)(space, arg); } SECStatus RNG_RNGInit(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RNG_RNGInit)(); } SECStatus RNG_RandomUpdate(const void *data, size_t bytes) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RNG_RandomUpdate)(data, bytes); } SECStatus RNG_GenerateGlobalRandomBytes(void *dest, size_t len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RNG_GenerateGlobalRandomBytes)(dest, len); } void RNG_RNGShutdown(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_RNG_RNGShutdown)(); } SECStatus PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PQG_ParamGen)(j, pParams, pVfy); } SECStatus PQG_ParamGenSeedLen( unsigned int j, unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PQG_ParamGenSeedLen)(j, seedBytes, pParams, pVfy); } SECStatus PQG_VerifyParams(const PQGParams *params, const PQGVerify *vfy, SECStatus *result) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PQG_VerifyParams)(params, vfy, result); } void PQG_DestroyParams(PQGParams *params) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_PQG_DestroyParams)(params); } void PQG_DestroyVerify(PQGVerify *vfy) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_PQG_DestroyVerify)(vfy); } void BL_Cleanup(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_BL_Cleanup)(); } void BL_Unload(void) { /* This function is not thread-safe, but doesn't need to be, because it is * only called from functions that are also defined as not thread-safe, * namely C_Finalize in softoken, and the SSL bypass shutdown callback called * from NSS_Shutdown. */ char *disableUnload = NULL; vector = NULL; /* If an SSL socket is configured with SSL_BYPASS_PKCS11, but the application * never does a handshake on it, BL_Unload will be called even though freebl * was never loaded. So, don't assert blLib. */ if (blLib) { disableUnload = PR_GetEnv("NSS_DISABLE_UNLOAD"); if (!disableUnload) { PRStatus status = PR_UnloadLibrary(blLib); PORT_Assert(PR_SUCCESS == status); } blLib = NULL; } loadFreeBLOnce = pristineCallOnce; } /* ============== New for 3.003 =============================== */ SECStatus SHA256_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA256_Hash)(dest, src); } SECStatus SHA256_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA256_HashBuf)(dest, src, src_length); } SHA256Context * SHA256_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA256_NewContext)(); } void SHA256_DestroyContext(SHA256Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA256_DestroyContext)(cx, freeit); } void SHA256_Begin(SHA256Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA256_Begin)(cx); } void SHA256_Update(SHA256Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA256_Update)(cx, input, inputLen); } void SHA256_End(SHA256Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA256_End)(cx, digest, digestLen, maxDigestLen); } void SHA256_TraceState(SHA256Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA256_TraceState)(cx); } unsigned int SHA256_FlattenSize(SHA256Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_SHA256_FlattenSize)(cx); } SECStatus SHA256_Flatten(SHA256Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA256_Flatten)(cx, space); } SHA256Context * SHA256_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA256_Resurrect)(space, arg); } SECStatus SHA512_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA512_Hash)(dest, src); } SECStatus SHA512_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA512_HashBuf)(dest, src, src_length); } SHA512Context * SHA512_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA512_NewContext)(); } void SHA512_DestroyContext(SHA512Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA512_DestroyContext)(cx, freeit); } void SHA512_Begin(SHA512Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA512_Begin)(cx); } void SHA512_Update(SHA512Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA512_Update)(cx, input, inputLen); } void SHA512_End(SHA512Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA512_End)(cx, digest, digestLen, maxDigestLen); } void SHA512_TraceState(SHA512Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA512_TraceState)(cx); } unsigned int SHA512_FlattenSize(SHA512Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_SHA512_FlattenSize)(cx); } SECStatus SHA512_Flatten(SHA512Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA512_Flatten)(cx, space); } SHA512Context * SHA512_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA512_Resurrect)(space, arg); } SECStatus SHA384_Hash(unsigned char *dest, const char *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA384_Hash)(dest, src); } SECStatus SHA384_HashBuf(unsigned char *dest, const unsigned char *src, uint32 src_length) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA384_HashBuf)(dest, src, src_length); } SHA384Context * SHA384_NewContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA384_NewContext)(); } void SHA384_DestroyContext(SHA384Context *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA384_DestroyContext)(cx, freeit); } void SHA384_Begin(SHA384Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA384_Begin)(cx); } void SHA384_Update(SHA384Context *cx, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA384_Update)(cx, input, inputLen); } void SHA384_End(SHA384Context *cx, unsigned char *digest, unsigned int *digestLen, unsigned int maxDigestLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA384_End)(cx, digest, digestLen, maxDigestLen); } void SHA384_TraceState(SHA384Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_SHA384_TraceState)(cx); } unsigned int SHA384_FlattenSize(SHA384Context *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return 0; return (vector->p_SHA384_FlattenSize)(cx); } SECStatus SHA384_Flatten(SHA384Context *cx,unsigned char *space) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SHA384_Flatten)(cx, space); } SHA384Context * SHA384_Resurrect(unsigned char *space, void *arg) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_SHA384_Resurrect)(space, arg); } AESKeyWrapContext * AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv, int encrypt, unsigned int keylen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return vector->p_AESKeyWrap_CreateContext(key, iv, encrypt, keylen); } void AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; vector->p_AESKeyWrap_DestroyContext(cx, freeit); } SECStatus AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return vector->p_AESKeyWrap_Encrypt(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return vector->p_AESKeyWrap_Decrypt(cx, output, outputLen, maxOutputLen, input, inputLen); } PRBool BLAPI_SHVerify(const char *name, PRFuncPtr addr) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return PR_FALSE; return vector->p_BLAPI_SHVerify(name, addr); } /* * The Caller is expected to pass NULL as the name, which will * trigger the p_BLAPI_VerifySelf() to return 'TRUE'. If we really loaded * from a shared library, BLAPI_VerifySelf will get pick up the real name * from the static set in freebl_LoadDSO( void ) */ PRBool BLAPI_VerifySelf(const char *name) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return PR_FALSE; return vector->p_BLAPI_VerifySelf(libraryName); } /* ============== New for 3.006 =============================== */ SECStatus EC_NewKey(ECParams * params, ECPrivateKey ** privKey) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_EC_NewKey)( params, privKey ); } SECStatus EC_NewKeyFromSeed(ECParams * params, ECPrivateKey ** privKey, const unsigned char *seed, int seedlen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_EC_NewKeyFromSeed)( params, privKey, seed, seedlen ); } SECStatus EC_ValidatePublicKey(ECParams * params, SECItem * publicValue) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_EC_ValidatePublicKey)( params, publicValue ); } SECStatus ECDH_Derive(SECItem * publicValue, ECParams * params, SECItem * privateValue, PRBool withCofactor, SECItem * derivedSecret) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_ECDH_Derive)( publicValue, params, privateValue, withCofactor, derivedSecret ); } SECStatus ECDSA_SignDigest(ECPrivateKey * key, SECItem * signature, const SECItem * digest) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_ECDSA_SignDigest)( key, signature, digest ); } SECStatus ECDSA_VerifyDigest(ECPublicKey * key, const SECItem * signature, const SECItem * digest) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_ECDSA_VerifyDigest)( key, signature, digest ); } SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey * key, SECItem * signature, const SECItem * digest, const unsigned char *seed, const int seedlen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_ECDSA_SignDigestWithSeed)( key, signature, digest, seed, seedlen ); } /* ============== New for 3.008 =============================== */ AESContext * AES_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_AES_AllocateContext)(); } AESKeyWrapContext * AESKeyWrap_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_AESKeyWrap_AllocateContext)(); } DESContext * DES_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_DES_AllocateContext)(); } RC2Context * RC2_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RC2_AllocateContext)(); } RC4Context * RC4_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_RC4_AllocateContext)(); } SECStatus AES_InitContext(AESContext *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int encrypt, unsigned int blocklen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_AES_InitContext)(cx, key, keylen, iv, mode, encrypt, blocklen); } SECStatus AESKeyWrap_InitContext(AESKeyWrapContext *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int encrypt, unsigned int blocklen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_AESKeyWrap_InitContext)(cx, key, keylen, iv, mode, encrypt, blocklen); } SECStatus DES_InitContext(DESContext *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int encrypt, unsigned int xtra) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_DES_InitContext)(cx, key, keylen, iv, mode, encrypt, xtra); } SECStatus SEED_InitContext(SEEDContext *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int encrypt, unsigned int xtra) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_SEED_InitContext)(cx, key, keylen, iv, mode, encrypt, xtra); } SECStatus RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int effectiveKeyLen, unsigned int xtra) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC2_InitContext)(cx, key, keylen, iv, mode, effectiveKeyLen, xtra); } SECStatus RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int keylen, const unsigned char *x1, int x2, unsigned int x3, unsigned int x4) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_RC4_InitContext)(cx, key, keylen, x1, x2, x3, x4); } void MD2_Clone(MD2Context *dest, MD2Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD2_Clone)(dest, src); } void MD5_Clone(MD5Context *dest, MD5Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_MD5_Clone)(dest, src); } void SHA1_Clone(SHA1Context *dest, SHA1Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_SHA1_Clone)(dest, src); } void SHA256_Clone(SHA256Context *dest, SHA256Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_SHA256_Clone)(dest, src); } void SHA384_Clone(SHA384Context *dest, SHA384Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_SHA384_Clone)(dest, src); } void SHA512_Clone(SHA512Context *dest, SHA512Context *src) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_SHA512_Clone)(dest, src); } SECStatus TLS_PRF(const SECItem *secret, const char *label, SECItem *seed, SECItem *result, PRBool isFIPS) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_TLS_PRF)(secret, label, seed, result, isFIPS); } const SECHashObject * HASH_GetRawHashObject(HASH_HashType hashType) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_HASH_GetRawHashObject)(hashType); } void HMAC_Destroy(HMACContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_HMAC_Destroy)(cx, freeit); } HMACContext * HMAC_Create(const SECHashObject *hashObj, const unsigned char *secret, unsigned int secret_len, PRBool isFIPS) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_HMAC_Create)(hashObj, secret, secret_len, isFIPS); } SECStatus HMAC_Init(HMACContext *cx, const SECHashObject *hashObj, const unsigned char *secret, unsigned int secret_len, PRBool isFIPS) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_HMAC_Init)(cx, hashObj, secret, secret_len, isFIPS); } void HMAC_Begin(HMACContext *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_HMAC_Begin)(cx); } void HMAC_Update(HMACContext *cx, const unsigned char *data, unsigned int data_len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_HMAC_Update)(cx, data, data_len); } SECStatus HMAC_Finish(HMACContext *cx, unsigned char *result, unsigned int *result_len, unsigned int max_result_len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_HMAC_Finish)(cx, result, result_len, max_result_len); } HMACContext * HMAC_Clone(HMACContext *cx) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_HMAC_Clone)(cx); } void RNG_SystemInfoForRNG(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_RNG_SystemInfoForRNG)(); } SECStatus FIPS186Change_GenerateX(unsigned char *XKEY, const unsigned char *XSEEDj, unsigned char *x_j) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_FIPS186Change_GenerateX)(XKEY, XSEEDj, x_j); } SECStatus FIPS186Change_ReduceModQForDSA(const unsigned char *w, const unsigned char *q, unsigned char *xj) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_FIPS186Change_ReduceModQForDSA)(w, q, xj); } /* === new for Camellia === */ SECStatus Camellia_InitContext(CamelliaContext *cx, const unsigned char *key, unsigned int keylen, const unsigned char *iv, int mode, unsigned int encrypt, unsigned int unused) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_Camellia_InitContext)(cx, key, keylen, iv, mode, encrypt, unused); } CamelliaContext * Camellia_AllocateContext(void) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_Camellia_AllocateContext)(); } CamelliaContext * Camellia_CreateContext(const unsigned char *key, const unsigned char *iv, int mode, int encrypt, unsigned int keylen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return NULL; return (vector->p_Camellia_CreateContext)(key, iv, mode, encrypt, keylen); } void Camellia_DestroyContext(CamelliaContext *cx, PRBool freeit) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return ; (vector->p_Camellia_DestroyContext)(cx, freeit); } SECStatus Camellia_Encrypt(CamelliaContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_Camellia_Encrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } SECStatus Camellia_Decrypt(CamelliaContext *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_Camellia_Decrypt)(cx, output, outputLen, maxOutputLen, input, inputLen); } void BL_SetForkState(PRBool forked) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return; (vector->p_BL_SetForkState)(forked); } SECStatus PRNGTEST_Instantiate(const PRUint8 *entropy, unsigned int entropy_len, const PRUint8 *nonce, unsigned int nonce_len, const PRUint8 *personal_string, unsigned int ps_len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PRNGTEST_Instantiate)(entropy, entropy_len, nonce, nonce_len, personal_string, ps_len); } SECStatus PRNGTEST_Reseed(const PRUint8 *entropy, unsigned int entropy_len, const PRUint8 *additional, unsigned int additional_len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PRNGTEST_Reseed)(entropy, entropy_len, additional, additional_len); } SECStatus PRNGTEST_Generate(PRUint8 *bytes, unsigned int bytes_len, const PRUint8 *additional, unsigned int additional_len) { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PRNGTEST_Generate)(bytes, bytes_len, additional, additional_len); } SECStatus PRNGTEST_Uninstantiate() { if (!vector && PR_SUCCESS != freebl_RunLoaderOnce()) return SECFailure; return (vector->p_PRNGTEST_Uninstantiate)(); }