/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * RSA key generation, public key op, private key op. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "secerr.h" #include "prclist.h" #include "nssilock.h" #include "prinit.h" #include "blapi.h" #include "mpi.h" #include "mpprime.h" #include "mplogic.h" #include "secmpi.h" #include "secitem.h" #include "blapii.h" /* ** Number of times to attempt to generate a prime (p or q) from a random ** seed (the seed changes for each iteration). */ #define MAX_PRIME_GEN_ATTEMPTS 10 /* ** Number of times to attempt to generate a key. The primes p and q change ** for each attempt. */ #define MAX_KEY_GEN_ATTEMPTS 10 /* Blinding Parameters max cache size */ #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 /* exponent should not be greater than modulus */ #define BAD_RSA_KEY_SIZE(modLen, expLen) \ ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \ (expLen) > RSA_MAX_EXPONENT_BITS/8) struct blindingParamsStr; typedef struct blindingParamsStr blindingParams; struct blindingParamsStr { blindingParams *next; mp_int f, g; /* blinding parameter */ int counter; /* number of remaining uses of (f, g) */ }; /* ** RSABlindingParamsStr ** ** For discussion of Paul Kocher's timing attack against an RSA private key ** operation, see http://www.cryptography.com/timingattack/paper.html. The ** countermeasure to this attack, known as blinding, is also discussed in ** the Handbook of Applied Cryptography, 11.118-11.119. */ struct RSABlindingParamsStr { /* Blinding-specific parameters */ PRCList link; /* link to list of structs */ SECItem modulus; /* list element "key" */ blindingParams *free, *bp; /* Blinding parameters queue */ blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; }; typedef struct RSABlindingParamsStr RSABlindingParams; /* ** RSABlindingParamsListStr ** ** List of key-specific blinding params. The arena holds the volatile pool ** of memory for each entry and the list itself. The lock is for list ** operations, in this case insertions and iterations, as well as control ** of the counter for each set of blinding parameters. */ struct RSABlindingParamsListStr { PZLock *lock; /* Lock for the list */ PRCondVar *cVar; /* Condidtion Variable */ int waitCount; /* Number of threads waiting on cVar */ PRCList head; /* Pointer to the list */ }; /* ** The master blinding params list. */ static struct RSABlindingParamsListStr blindingParamsList = { 0 }; /* Number of times to reuse (f, g). Suggested by Paul Kocher */ #define RSA_BLINDING_PARAMS_MAX_REUSE 50 /* Global, allows optional use of blinding. On by default. */ /* Cannot be changed at the moment, due to thread-safety issues. */ static PRBool nssRSAUseBlinding = PR_TRUE; static SECStatus rsa_build_from_primes(mp_int *p, mp_int *q, mp_int *e, PRBool needPublicExponent, mp_int *d, PRBool needPrivateExponent, RSAPrivateKey *key, unsigned int keySizeInBits) { mp_int n, phi; mp_int psub1, qsub1, tmp; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&n) = 0; MP_DIGITS(&phi) = 0; MP_DIGITS(&psub1) = 0; MP_DIGITS(&qsub1) = 0; MP_DIGITS(&tmp) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&phi) ); CHECK_MPI_OK( mp_init(&psub1) ); CHECK_MPI_OK( mp_init(&qsub1) ); CHECK_MPI_OK( mp_init(&tmp) ); /* 1. Compute n = p*q */ CHECK_MPI_OK( mp_mul(p, q, &n) ); /* verify that the modulus has the desired number of bits */ if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { PORT_SetError(SEC_ERROR_NEED_RANDOM); rv = SECFailure; goto cleanup; } /* at least one exponent must be given */ PORT_Assert(!(needPublicExponent && needPrivateExponent)); /* 2. Compute phi = (p-1)*(q-1) */ CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); if (needPublicExponent || needPrivateExponent) { CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); /* 3. Compute d = e**-1 mod(phi) */ /* or e = d**-1 mod(phi) as necessary */ if (needPublicExponent) { err = mp_invmod(d, &phi, e); } else { err = mp_invmod(e, &phi, d); } } else { err = MP_OKAY; } /* Verify that phi(n) and e have no common divisors */ if (err != MP_OKAY) { if (err == MP_UNDEF) { PORT_SetError(SEC_ERROR_NEED_RANDOM); err = MP_OKAY; /* to keep PORT_SetError from being called again */ rv = SECFailure; } goto cleanup; } /* 4. Compute exponent1 = d mod (p-1) */ CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); /* 5. Compute exponent2 = d mod (q-1) */ CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); /* 6. Compute coefficient = q**-1 mod p */ CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); /* copy our calculated results, overwrite what is there */ key->modulus.data = NULL; MPINT_TO_SECITEM(&n, &key->modulus, key->arena); key->privateExponent.data = NULL; MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); key->publicExponent.data = NULL; MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); key->prime1.data = NULL; MPINT_TO_SECITEM(p, &key->prime1, key->arena); key->prime2.data = NULL; MPINT_TO_SECITEM(q, &key->prime2, key->arena); cleanup: mp_clear(&n); mp_clear(&phi); mp_clear(&psub1); mp_clear(&qsub1); mp_clear(&tmp); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } static SECStatus generate_prime(mp_int *prime, int primeLen) { mp_err err = MP_OKAY; SECStatus rv = SECSuccess; unsigned long counter = 0; int piter; unsigned char *pb = NULL; pb = PORT_Alloc(primeLen); if (!pb) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); pb[0] |= 0xC0; /* set two high-order bits */ pb[primeLen-1] |= 0x01; /* set low-order bit */ CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); if (err != MP_NO) goto cleanup; /* keep going while err == MP_NO */ } cleanup: if (pb) PORT_ZFree(pb, primeLen); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* ** Generate and return a new RSA public and private key. ** Both keys are encoded in a single RSAPrivateKey structure. ** "cx" is the random number generator context ** "keySizeInBits" is the size of the key to be generated, in bits. ** 512, 1024, etc. ** "publicExponent" when not NULL is a pointer to some data that ** represents the public exponent to use. The data is a byte ** encoded integer, in "big endian" order. */ RSAPrivateKey * RSA_NewKey(int keySizeInBits, SECItem *publicExponent) { unsigned int primeLen; mp_int p, q, e, d; int kiter; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; int prerr = 0; RSAPrivateKey *key = NULL; PLArenaPool *arena = NULL; /* Require key size to be a multiple of 16 bits. */ if (!publicExponent || keySizeInBits % 16 != 0 || BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return NULL; } /* 1. Allocate arena & key */ arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { PORT_SetError(SEC_ERROR_NO_MEMORY); return NULL; } key = PORT_ArenaZNew(arena, RSAPrivateKey); if (!key) { PORT_SetError(SEC_ERROR_NO_MEMORY); PORT_FreeArena(arena, PR_TRUE); return NULL; } key->arena = arena; /* length of primes p and q (in bytes) */ primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE); MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ SECITEM_AllocItem(arena, &key->version, 1); key->version.data[0] = 0; /* 3. Set the public exponent */ SECITEM_TO_MPINT(*publicExponent, &e); kiter = 0; do { prerr = 0; PORT_SetError(0); CHECK_SEC_OK( generate_prime(&p, primeLen) ); CHECK_SEC_OK( generate_prime(&q, primeLen) ); /* Assure q < p */ if (mp_cmp(&p, &q) < 0) mp_exch(&p, &q); /* Attempt to use these primes to generate a key */ rv = rsa_build_from_primes(&p, &q, &e, PR_FALSE, /* needPublicExponent=false */ &d, PR_TRUE, /* needPrivateExponent=true */ key, keySizeInBits); if (rv == SECSuccess) break; /* generated two good primes */ prerr = PORT_GetError(); kiter++; /* loop until have primes */ } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); if (prerr) goto cleanup; cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&e); mp_clear(&d); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv && arena) { PORT_FreeArena(arena, PR_TRUE); key = NULL; } return key; } mp_err rsa_is_prime(mp_int *p) { int res; /* run a Fermat test */ res = mpp_fermat(p, 2); if (res != MP_OKAY) { return res; } /* If that passed, run some Miller-Rabin tests */ res = mpp_pprime(p, 2); return res; } /* * Try to find the two primes based on 2 exponents plus either a prime * or a modulus. * * In: e, d and either p or n (depending on the setting of hasModulus). * Out: p,q. * * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is * usually less than d, then k must be an integer between e-1 and 1 * (probably on the order of e). * Step 1a, If we were passed just a prime, we can divide k*phi by that * prime-1 and get k*(q-1). This will reduce the size of our division * through the rest of the loop. * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on * the order or e, and e is typically small. This may take a while for * a large random e. We are looking for a k that divides kphi * evenly. Once we find a k that divides kphi evenly, we assume it * is the true k. It's possible this k is not the 'true' k but has * swapped factors of p-1 and/or q-1. Because of this, we * tentatively continue Steps 3-6 inside this loop, and may return looking * for another k on failure. * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative * q-1. q = phi+1. If k is correct, q should be the right length and * prime. * Step 4b, It's possible q-1 and k could have swapped factors. We now have a * possible solution that meets our criteria. It may not be the only * solution, however, so we keep looking. If we find more than one, * we will fail since we cannot determine which is the correct * solution, and returning the wrong modulus will compromise both * moduli. If no other solution is found, we return the unique solution. * Step 5a, If we have the modulus (n=pq), then use the following formula to * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so * s=n-phi+1. * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. * If it is not, continue in our look looking for another k. NOTE: the * code actually distributes the 1/2 and results in the equations: * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us * and extra divide by 2 and a multiply by 4. * * This will return p & q. q may be larger than p in the case that p was given * and it was the smaller prime. */ static mp_err rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, mp_int *n, PRBool hasModulus, unsigned int keySizeInBits) { mp_int kphi; /* k*phi */ mp_int k; /* current guess at 'k' */ mp_int phi; /* (p-1)(q-1) */ mp_int s; /* p+q/2 (s/2 in the algebra) */ mp_int r; /* remainder */ mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ mp_int sqrt; /* sqrt(s/2*s/2-n) */ mp_err err = MP_OKAY; unsigned int order_k; MP_DIGITS(&kphi) = 0; MP_DIGITS(&phi) = 0; MP_DIGITS(&s) = 0; MP_DIGITS(&k) = 0; MP_DIGITS(&r) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&sqrt) = 0; CHECK_MPI_OK( mp_init(&kphi) ); CHECK_MPI_OK( mp_init(&phi) ); CHECK_MPI_OK( mp_init(&s) ); CHECK_MPI_OK( mp_init(&k) ); CHECK_MPI_OK( mp_init(&r) ); CHECK_MPI_OK( mp_init(&tmp) ); CHECK_MPI_OK( mp_init(&sqrt) ); /* our algorithm looks for a factor k whose maximum size is dependent * on the size of our smallest exponent, which had better be the public * exponent (if it's the private, the key is vulnerable to a brute force * attack). * * since our factor search is linear, we need to limit the maximum * size of the public key. this should not be a problem normally, since * public keys are usually small. * * if we want to handle larger public key sizes, we should have * a version which tries to 'completely' factor k*phi (where completely * means 'factor into primes, or composites with which are products of * large primes). Once we have all the factors, we can sort them out and * try different combinations to form our phi. The risk is if (p-1)/2, * (q-1)/2, and k are all large primes. In any case if the public key * is small (order of 20 some bits), then a linear search for k is * manageable. */ if (mpl_significant_bits(e) > 23) { err=MP_RANGE; goto cleanup; } /* calculate k*phi = e*d - 1 */ CHECK_MPI_OK( mp_mul(e, d, &kphi) ); CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) * d < (p-1)(q-1), therefor k must be less than e-1 * We can narrow down k even more, though. Since p and q are odd and both * have their high bit set, then we know that phi must be on order of * keySizeBits. */ order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; /* for (k=kinit; order(k) >= order_k; k--) { */ /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); if (mp_cmp(&k,e) >= 0) { /* also can't be bigger then e-1 */ CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); } /* calculate our temp value */ /* This saves recalculating this value when the k guess is wrong, which * is reasonably frequent. */ /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ if (hasModulus) { CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); } else { CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); if (mp_cmp_z(&r) != 0) { /* p-1 doesn't divide kphi, some parameter wasn't correct */ err=MP_RANGE; goto cleanup; } mp_zero(q); /* kphi is now k*(q-1) */ } /* rest of the for loop */ for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); err = mp_sub_d(&k, 1, &k)) { /* looking for k as a factor of kphi */ CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); if (mp_cmp_z(&r) != 0) { /* not a factor, try the next one */ continue; } /* we have a possible phi, see if it works */ if (!hasModulus) { if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { /* phi is not the right size */ continue; } /* phi should be divisible by 2, since * q is odd and phi=(q-1). */ if (mpp_divis_d(&phi,2) == MP_NO) { /* phi is not divisible by 4 */ continue; } /* we now have a candidate for the second prime */ CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); /* check to make sure it is prime */ err = rsa_is_prime(&tmp); if (err != MP_OKAY) { if (err == MP_NO) { /* No, then we still have the wrong phi */ err = MP_OKAY; continue; } goto cleanup; } /* * It is possible that we have the wrong phi if * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). * since our q_quess is prime, however. We have found a valid * rsa key because: * q is the correct order of magnitude. * phi = (p-1)(q-1) where p and q are both primes. * e*d mod phi = 1. * There is no way to know from the info given if this is the * original key. We never want to return the wrong key because if * two moduli with the same factor is known, then euclid's gcd * algorithm can be used to find that factor. Even though the * caller didn't pass the original modulus, it doesn't mean the * modulus wasn't known or isn't available somewhere. So to be safe * if we can't be sure we have the right q, we don't return any. * * So to make sure we continue looking for other valid q's. If none * are found, then we can safely return this one, otherwise we just * fail */ if (mp_cmp_z(q) != 0) { /* this is the second valid q, don't return either, * just fail */ err = MP_RANGE; break; } /* we only have one q so far, save it and if no others are found, * it's safe to return it */ CHECK_MPI_OK(mp_copy(&tmp, q)); continue; } /* test our tentative phi */ /* phi should be the correct order */ if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { /* phi is not the right size */ continue; } /* phi should be divisible by 4, since * p and q are odd and phi=(p-1)(q-1). */ if (mpp_divis_d(&phi,4) == MP_NO) { /* phi is not divisible by 4 */ continue; } /* n was given, calculate s/2=(p+q)/2 */ CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); CHECK_MPI_OK( mp_div_2(&s, &s) ); /* calculate sqrt(s/2*s/2-n) */ CHECK_MPI_OK(mp_sqr(&s,&sqrt)); CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); /* make sure it's a perfect square */ /* r is our original value we took the square root of */ /* q is the square of our tentative square root. They should be equal*/ CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ if (mp_cmp(&r,q) != 0) { /* sigh according to the doc, mp_sqrt could return sqrt-1 */ CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); CHECK_MPI_OK(mp_sqr(&sqrt,q)); if (mp_cmp(&r,q) != 0) { /* s*s-n not a perfect square, this phi isn't valid, find * another.*/ continue; } } /* NOTE: In this case we know we have the one and only answer. * "Why?", you ask. Because: * 1) n is a composite of two large primes (or it wasn't a * valid RSA modulus). * 2) If we know any number such that x^2-n is a perfect square * and x is not (n+1)/2, then we can calculate 2 non-trivial * factors of n. * 3) Since we know that n has only 2 non-trivial prime factors, * we know the two factors we have are the only possible factors. */ /* Now we are home free to calculate p and q */ /* p = s/2 + sqrt, q= s/2 - sqrt */ CHECK_MPI_OK(mp_add(&s,&sqrt,p)); CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); break; } if ((unsigned)mpl_significant_bits(&k) < order_k) { if (hasModulus || (mp_cmp_z(q) == 0)) { /* If we get here, something was wrong with the parameters we * were given */ err = MP_RANGE; } } cleanup: mp_clear(&kphi); mp_clear(&phi); mp_clear(&s); mp_clear(&k); mp_clear(&r); mp_clear(&tmp); mp_clear(&sqrt); return err; } /* * take a private key with only a few elements and fill out the missing pieces. * * All the entries will be overwritten with data allocated out of the arena * If no arena is supplied, one will be created. * * The following fields must be supplied in order for this function * to succeed: * one of either publicExponent or privateExponent * two more of the following 5 parameters. * modulus (n) * prime1 (p) * prime2 (q) * publicExponent (e) * privateExponent (d) * * NOTE: if only the publicExponent, privateExponent, and one prime is given, * then there may be more than one RSA key that matches that combination. * * All parameters will be replaced in the key structure with new parameters * Allocated out of the arena. There is no attempt to free the old structures. * Prime1 will always be greater than prime2 (even if the caller supplies the * smaller prime as prime1 or the larger prime as prime2). The parameters are * not overwritten on failure. * * How it works: * We can generate all the parameters from: * one of the exponents, plus the two primes. (rsa_build_key_from_primes) * * If we are given one of the exponents and both primes, we are done. * If we are given one of the exponents, the modulus and one prime, we * caclulate the second prime by dividing the modulus by the given * prime, giving us and exponent and 2 primes. * If we are given 2 exponents and either the modulus or one of the primes * we calculate k*phi = d*e-1, where k is an integer less than d which * divides d*e-1. We find factor k so we can isolate phi. * phi = (p-1)(q-1) * If one of the primes are given, we can use phi to find the other prime * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an * exponent. (NOTE: if more then one prime meets this condition, the * operation will fail. See comments elsewhere in this file about this). * If the modulus is given, then we can calculate the sum of the primes * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have * 2 primes and an exponent. * */ SECStatus RSA_PopulatePrivateKey(RSAPrivateKey *key) { PLArenaPool *arena = NULL; PRBool needPublicExponent = PR_TRUE; PRBool needPrivateExponent = PR_TRUE; PRBool hasModulus = PR_FALSE; unsigned int keySizeInBits = 0; int prime_count = 0; /* standard RSA nominclature */ mp_int p, q, e, d, n; /* remainder */ mp_int r; mp_err err = 0; SECStatus rv = SECFailure; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&n) = 0; MP_DIGITS(&r) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&r) ); /* if the key didn't already have an arena, create one. */ if (key->arena == NULL) { arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); if (!arena) { goto cleanup; } key->arena = arena; } /* load up the known exponents */ if (key->publicExponent.data) { SECITEM_TO_MPINT(key->publicExponent, &e); needPublicExponent = PR_FALSE; } if (key->privateExponent.data) { SECITEM_TO_MPINT(key->privateExponent, &d); needPrivateExponent = PR_FALSE; } if (needPrivateExponent && needPublicExponent) { /* Not enough information, we need at least one exponent */ err = MP_BADARG; goto cleanup; } /* load up the known primes. If only one prime is given, it will be * assigned 'p'. Once we have both primes, well make sure p is the larger. * The value prime_count tells us howe many we have acquired. */ if (key->prime1.data) { int primeLen = key->prime1.len; if (key->prime1.data[0] == 0) { primeLen--; } keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->prime1, &p); prime_count++; } if (key->prime2.data) { int primeLen = key->prime2.len; if (key->prime2.data[0] == 0) { primeLen--; } keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); prime_count++; } /* load up the modulus */ if (key->modulus.data) { int modLen = key->modulus.len; if (key->modulus.data[0] == 0) { modLen--; } keySizeInBits = modLen * PR_BITS_PER_BYTE; SECITEM_TO_MPINT(key->modulus, &n); hasModulus = PR_TRUE; } /* if we have the modulus and one prime, calculate the second. */ if ((prime_count == 1) && (hasModulus)) { mp_div(&n,&p,&q,&r); if (mp_cmp_z(&r) != 0) { /* p is not a factor or n, fail */ err = MP_BADARG; goto cleanup; } prime_count++; } /* If we didn't have enough primes try to calculate the primes from * the exponents */ if (prime_count < 2) { /* if we don't have at least 2 primes at this point, then we need both * exponents and one prime or a modulus*/ if (!needPublicExponent && !needPrivateExponent && ((prime_count > 0) || hasModulus)) { CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, &n,hasModulus,keySizeInBits)); } else { /* not enough given parameters to get both primes */ err = MP_BADARG; goto cleanup; } } /* force p to the the larger prime */ if (mp_cmp(&p, &q) < 0) mp_exch(&p, &q); /* we now have our 2 primes and at least one exponent, we can fill * in the key */ rv = rsa_build_from_primes(&p, &q, &e, needPublicExponent, &d, needPrivateExponent, key, keySizeInBits); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&e); mp_clear(&d); mp_clear(&n); mp_clear(&r); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv && arena) { PORT_FreeArena(arena, PR_TRUE); key->arena = NULL; } return rv; } static unsigned int rsa_modulusLen(SECItem *modulus) { unsigned char byteZero = modulus->data[0]; unsigned int modLen = modulus->len - !byteZero; return modLen; } /* ** Perform a raw public-key operation ** Length of input and output buffers are equal to key's modulus len. */ SECStatus RSA_PublicKeyOp(RSAPublicKey *key, unsigned char *output, const unsigned char *input) { unsigned int modLen, expLen, offset; mp_int n, e, m, c; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; if (!key || !output || !input) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&n) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&m) = 0; MP_DIGITS(&c) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&m) ); CHECK_MPI_OK( mp_init(&c) ); modLen = rsa_modulusLen(&key->modulus); expLen = rsa_modulusLen(&key->publicExponent); /* 1. Obtain public key (n, e) */ if (BAD_RSA_KEY_SIZE(modLen, expLen)) { PORT_SetError(SEC_ERROR_INVALID_KEY); rv = SECFailure; goto cleanup; } SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->publicExponent, &e); if (e.used > n.used) { /* exponent should not be greater than modulus */ PORT_SetError(SEC_ERROR_INVALID_KEY); rv = SECFailure; goto cleanup; } /* 2. check input out of range (needs to be in range [0..n-1]) */ offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { PORT_SetError(SEC_ERROR_INPUT_LEN); rv = SECFailure; goto cleanup; } /* 2 bis. Represent message as integer in range [0..n-1] */ CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); /* 3. Compute c = m**e mod n */ #ifdef USE_MPI_EXPT_D /* XXX see which is faster */ if (MP_USED(&e) == 1) { CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); } else #endif CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); /* 4. result c is ciphertext */ err = mp_to_fixlen_octets(&c, output, modLen); if (err >= 0) err = MP_OKAY; cleanup: mp_clear(&n); mp_clear(&e); mp_clear(&m); mp_clear(&c); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* ** RSA Private key operation (no CRT). */ static SECStatus rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, unsigned int modLen) { mp_int d; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&d) = 0; CHECK_MPI_OK( mp_init(&d) ); SECITEM_TO_MPINT(key->privateExponent, &d); /* 1. m = c**d mod n */ CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); cleanup: mp_clear(&d); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* ** RSA Private key operation using CRT. */ static SECStatus rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) { mp_int p, q, d_p, d_q, qInv; mp_int m1, m2, h, ctmp; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&d_p) = 0; MP_DIGITS(&d_q) = 0; MP_DIGITS(&qInv) = 0; MP_DIGITS(&m1) = 0; MP_DIGITS(&m2) = 0; MP_DIGITS(&h) = 0; MP_DIGITS(&ctmp) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&d_p) ); CHECK_MPI_OK( mp_init(&d_q) ); CHECK_MPI_OK( mp_init(&qInv) ); CHECK_MPI_OK( mp_init(&m1) ); CHECK_MPI_OK( mp_init(&m2) ); CHECK_MPI_OK( mp_init(&h) ); CHECK_MPI_OK( mp_init(&ctmp) ); /* copy private key parameters into mp integers */ SECITEM_TO_MPINT(key->prime1, &p); /* p */ SECITEM_TO_MPINT(key->prime2, &q); /* q */ SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ /* 1. m1 = c**d_p mod p */ CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); /* 2. m2 = c**d_q mod q */ CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); /* 3. h = (m1 - m2) * qInv mod p */ CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); /* 4. m = m2 + h * q */ CHECK_MPI_OK( mp_mul(&h, &q, m) ); CHECK_MPI_OK( mp_add(m, &m2, m) ); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&d_p); mp_clear(&d_q); mp_clear(&qInv); mp_clear(&m1); mp_clear(&m2); mp_clear(&h); mp_clear(&ctmp); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: ** "On the Importance of Eliminating Errors in Cryptographic Computations", ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz ** ** As a defense against the attack, carry out the private key operation, ** followed up with a public key operation to invert the result. ** Verify that result against the input. */ static SECStatus rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) { mp_int n, e, v; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&n) = 0; MP_DIGITS(&e) = 0; MP_DIGITS(&v) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&v) ); CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->publicExponent, &e); /* Perform a public key operation v = m ** e mod n */ CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); if (mp_cmp(&v, c) != 0) { rv = SECFailure; } cleanup: mp_clear(&n); mp_clear(&e); mp_clear(&v); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } static PRCallOnceType coBPInit = { 0, 0, 0 }; static PRStatus init_blinding_params_list(void) { blindingParamsList.lock = PZ_NewLock(nssILockOther); if (!blindingParamsList.lock) { PORT_SetError(SEC_ERROR_NO_MEMORY); return PR_FAILURE; } blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock ); if (!blindingParamsList.cVar) { PORT_SetError(SEC_ERROR_NO_MEMORY); return PR_FAILURE; } blindingParamsList.waitCount = 0; PR_INIT_CLIST(&blindingParamsList.head); return PR_SUCCESS; } static SECStatus generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, unsigned int modLen) { SECStatus rv = SECSuccess; mp_int e, k; mp_err err = MP_OKAY; unsigned char *kb = NULL; MP_DIGITS(&e) = 0; MP_DIGITS(&k) = 0; CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&k) ); SECITEM_TO_MPINT(key->publicExponent, &e); /* generate random k < n */ kb = PORT_Alloc(modLen); if (!kb) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); /* k < n */ CHECK_MPI_OK( mp_mod(&k, n, &k) ); /* f = k**e mod n */ CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); /* g = k**-1 mod n */ CHECK_MPI_OK( mp_invmod(&k, n, g) ); cleanup: if (kb) PORT_ZFree(kb, modLen); mp_clear(&k); mp_clear(&e); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } static SECStatus init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, mp_int *n, unsigned int modLen) { blindingParams * bp = rsabp->array; int i = 0; /* Initialize the list pointer for the element */ PR_INIT_CLIST(&rsabp->link); for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { bp->next = bp + 1; MP_DIGITS(&bp->f) = 0; MP_DIGITS(&bp->g) = 0; bp->counter = 0; } /* The last bp->next value was initialized with out * of rsabp->array pointer and must be set to NULL */ rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; bp = rsabp->array; rsabp->bp = NULL; rsabp->free = bp; /* List elements are keyed using the modulus */ SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); return SECSuccess; } static SECStatus get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, mp_int *f, mp_int *g) { RSABlindingParams *rsabp = NULL; blindingParams *bpUnlinked = NULL; blindingParams *bp, *prevbp = NULL; PRCList *el; SECStatus rv = SECSuccess; mp_err err = MP_OKAY; int cmp = -1; PRBool holdingLock = PR_FALSE; do { if (blindingParamsList.lock == NULL) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Acquire the list lock */ PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; /* Walk the list looking for the private key */ for (el = PR_NEXT_LINK(&blindingParamsList.head); el != &blindingParamsList.head; el = PR_NEXT_LINK(el)) { rsabp = (RSABlindingParams *)el; cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); if (cmp >= 0) { /* The key is found or not in the list. */ break; } } if (cmp) { /* At this point, the key is not in the list. el should point to ** the list element before which this key should be inserted. */ rsabp = PORT_ZNew(RSABlindingParams); if (!rsabp) { PORT_SetError(SEC_ERROR_NO_MEMORY); goto cleanup; } rv = init_blinding_params(rsabp, key, n, modLen); if (rv != SECSuccess) { PORT_ZFree(rsabp, sizeof(RSABlindingParams)); goto cleanup; } /* Insert the new element into the list ** If inserting in the middle of the list, el points to the link ** to insert before. Otherwise, the link needs to be appended to ** the end of the list, which is the same as inserting before the ** head (since el would have looped back to the head). */ PR_INSERT_BEFORE(&rsabp->link, el); } /* We've found (or created) the RSAblindingParams struct for this key. * Now, search its list of ready blinding params for a usable one. */ while (0 != (bp = rsabp->bp)) { if (--(bp->counter) > 0) { /* Found a match and there are still remaining uses left */ /* Return the parameters */ CHECK_MPI_OK( mp_copy(&bp->f, f) ); CHECK_MPI_OK( mp_copy(&bp->g, g) ); PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* exhausted this one, give its values to caller, and * then retire it. */ mp_exch(&bp->f, f); mp_exch(&bp->g, g); mp_clear( &bp->f ); mp_clear( &bp->g ); bp->counter = 0; /* Move to free list */ rsabp->bp = bp->next; bp->next = rsabp->free; rsabp->free = bp; /* In case there're threads waiting for new blinding * value - notify 1 thread the value is ready */ if (blindingParamsList.waitCount > 0) { PR_NotifyCondVar( blindingParamsList.cVar ); blindingParamsList.waitCount--; } PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* We did not find a usable set of blinding params. Can we make one? */ /* Find a free bp struct. */ prevbp = NULL; if ((bp = rsabp->free) != NULL) { /* unlink this bp */ rsabp->free = bp->next; bp->next = NULL; bpUnlinked = bp; /* In case we fail */ PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; /* generate blinding parameter values for the current thread */ CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); /* put the blinding parameter values into cache */ CHECK_MPI_OK( mp_init( &bp->f) ); CHECK_MPI_OK( mp_init( &bp->g) ); CHECK_MPI_OK( mp_copy( f, &bp->f) ); CHECK_MPI_OK( mp_copy( g, &bp->g) ); /* Put this at head of queue of usable params. */ PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; /* initialize RSABlindingParamsStr */ bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; bp->next = rsabp->bp; rsabp->bp = bp; bpUnlinked = NULL; /* In case there're threads waiting for new blinding value * just notify them the value is ready */ if (blindingParamsList.waitCount > 0) { PR_NotifyAllCondVar( blindingParamsList.cVar ); blindingParamsList.waitCount = 0; } PZ_Unlock(blindingParamsList.lock); return SECSuccess; } /* Here, there are no usable blinding parameters available, * and no free bp blocks, presumably because they're all * actively having parameters generated for them. * So, we need to wait here and not eat up CPU until some * change happens. */ blindingParamsList.waitCount++; PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; } while (1); cleanup: /* It is possible to reach this after the lock is already released. */ if (bpUnlinked) { if (!holdingLock) { PZ_Lock(blindingParamsList.lock); holdingLock = PR_TRUE; } bp = bpUnlinked; mp_clear( &bp->f ); mp_clear( &bp->g ); bp->counter = 0; /* Must put the unlinked bp back on the free list */ bp->next = rsabp->free; rsabp->free = bp; } if (holdingLock) { PZ_Unlock(blindingParamsList.lock); holdingLock = PR_FALSE; } if (err) { MP_TO_SEC_ERROR(err); } return SECFailure; } /* ** Perform a raw private-key operation ** Length of input and output buffers are equal to key's modulus len. */ static SECStatus rsa_PrivateKeyOp(RSAPrivateKey *key, unsigned char *output, const unsigned char *input, PRBool check) { unsigned int modLen; unsigned int offset; SECStatus rv = SECSuccess; mp_err err; mp_int n, c, m; mp_int f, g; if (!key || !output || !input) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* check input out of range (needs to be in range [0..n-1]) */ modLen = rsa_modulusLen(&key->modulus); offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&n) = 0; MP_DIGITS(&c) = 0; MP_DIGITS(&m) = 0; MP_DIGITS(&f) = 0; MP_DIGITS(&g) = 0; CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&c) ); CHECK_MPI_OK( mp_init(&m) ); CHECK_MPI_OK( mp_init(&f) ); CHECK_MPI_OK( mp_init(&g) ); SECITEM_TO_MPINT(key->modulus, &n); OCTETS_TO_MPINT(input, &c, modLen); /* If blinding, compute pre-image of ciphertext by multiplying by ** blinding factor */ if (nssRSAUseBlinding) { CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); /* c' = c*f mod n */ CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); } /* Do the private key operation m = c**d mod n */ if ( key->prime1.len == 0 || key->prime2.len == 0 || key->exponent1.len == 0 || key->exponent2.len == 0 || key->coefficient.len == 0) { CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); } else if (check) { CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); } else { CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); } /* If blinding, compute post-image of plaintext by multiplying by ** blinding factor */ if (nssRSAUseBlinding) { /* m = m'*g mod n */ CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); } err = mp_to_fixlen_octets(&m, output, modLen); if (err >= 0) err = MP_OKAY; cleanup: mp_clear(&n); mp_clear(&c); mp_clear(&m); mp_clear(&f); mp_clear(&g); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } SECStatus RSA_PrivateKeyOp(RSAPrivateKey *key, unsigned char *output, const unsigned char *input) { return rsa_PrivateKeyOp(key, output, input, PR_FALSE); } SECStatus RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, unsigned char *output, const unsigned char *input) { return rsa_PrivateKeyOp(key, output, input, PR_TRUE); } static SECStatus swap_in_key_value(PLArenaPool *arena, mp_int *mpval, SECItem *buffer) { int len; mp_err err = MP_OKAY; memset(buffer->data, 0, buffer->len); len = mp_unsigned_octet_size(mpval); if (len <= 0) return SECFailure; if ((unsigned int)len <= buffer->len) { /* The new value is no longer than the old buffer, so use it */ err = mp_to_unsigned_octets(mpval, buffer->data, len); if (err >= 0) err = MP_OKAY; buffer->len = len; } else if (arena) { /* The new value is longer, but working within an arena */ (void)SECITEM_AllocItem(arena, buffer, len); err = mp_to_unsigned_octets(mpval, buffer->data, len); if (err >= 0) err = MP_OKAY; } else { /* The new value is longer, no arena, can't handle this key */ return SECFailure; } return (err == MP_OKAY) ? SECSuccess : SECFailure; } SECStatus RSA_PrivateKeyCheck(RSAPrivateKey *key) { mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; mp_err err = MP_OKAY; SECStatus rv = SECSuccess; MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&n) = 0; MP_DIGITS(&psub1)= 0; MP_DIGITS(&qsub1)= 0; MP_DIGITS(&e) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&d_p) = 0; MP_DIGITS(&d_q) = 0; MP_DIGITS(&qInv) = 0; MP_DIGITS(&res) = 0; CHECK_MPI_OK( mp_init(&p) ); CHECK_MPI_OK( mp_init(&q) ); CHECK_MPI_OK( mp_init(&n) ); CHECK_MPI_OK( mp_init(&psub1)); CHECK_MPI_OK( mp_init(&qsub1)); CHECK_MPI_OK( mp_init(&e) ); CHECK_MPI_OK( mp_init(&d) ); CHECK_MPI_OK( mp_init(&d_p) ); CHECK_MPI_OK( mp_init(&d_q) ); CHECK_MPI_OK( mp_init(&qInv) ); CHECK_MPI_OK( mp_init(&res) ); SECITEM_TO_MPINT(key->modulus, &n); SECITEM_TO_MPINT(key->prime1, &p); SECITEM_TO_MPINT(key->prime2, &q); SECITEM_TO_MPINT(key->publicExponent, &e); SECITEM_TO_MPINT(key->privateExponent, &d); SECITEM_TO_MPINT(key->exponent1, &d_p); SECITEM_TO_MPINT(key->exponent2, &d_q); SECITEM_TO_MPINT(key->coefficient, &qInv); /* p > q */ if (mp_cmp(&p, &q) <= 0) { /* mind the p's and q's (and d_p's and d_q's) */ SECItem tmp; mp_exch(&p, &q); mp_exch(&d_p,&d_q); tmp = key->prime1; key->prime1 = key->prime2; key->prime2 = tmp; tmp = key->exponent1; key->exponent1 = key->exponent2; key->exponent2 = tmp; } #define VERIFY_MPI_EQUAL(m1, m2) \ if (mp_cmp(m1, m2) != 0) { \ rv = SECFailure; \ goto cleanup; \ } #define VERIFY_MPI_EQUAL_1(m) \ if (mp_cmp_d(m, 1) != 0) { \ rv = SECFailure; \ goto cleanup; \ } /* * The following errors cannot be recovered from. */ /* n == p * q */ CHECK_MPI_OK( mp_mul(&p, &q, &res) ); VERIFY_MPI_EQUAL(&res, &n); /* gcd(e, p-1) == 1 */ CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* gcd(e, q-1) == 1 */ CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* d*e == 1 mod p-1 */ CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* d*e == 1 mod q-1 */ CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); VERIFY_MPI_EQUAL_1(&res); /* * The following errors can be recovered from. */ /* d_p == d mod p-1 */ CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); if (mp_cmp(&d_p, &res) != 0) { /* swap in the correct value */ CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent1) ); } /* d_q == d mod q-1 */ CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); if (mp_cmp(&d_q, &res) != 0) { /* swap in the correct value */ CHECK_SEC_OK( swap_in_key_value(key->arena, &res, &key->exponent2) ); } /* q * q**-1 == 1 mod p */ CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); if (mp_cmp_d(&res, 1) != 0) { /* compute the correct value */ CHECK_MPI_OK( mp_invmod(&q, &p, &qInv) ); CHECK_SEC_OK( swap_in_key_value(key->arena, &qInv, &key->coefficient) ); } cleanup: mp_clear(&n); mp_clear(&p); mp_clear(&q); mp_clear(&psub1); mp_clear(&qsub1); mp_clear(&e); mp_clear(&d); mp_clear(&d_p); mp_clear(&d_q); mp_clear(&qInv); mp_clear(&res); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } static SECStatus RSA_Init(void) { if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } return SECSuccess; } SECStatus BL_Init(void) { return RSA_Init(); } /* cleanup at shutdown */ void RSA_Cleanup(void) { blindingParams * bp = NULL; if (!coBPInit.initialized) return; while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { RSABlindingParams *rsabp = (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); PR_REMOVE_LINK(&rsabp->link); /* clear parameters cache */ while (rsabp->bp != NULL) { bp = rsabp->bp; rsabp->bp = rsabp->bp->next; mp_clear( &bp->f ); mp_clear( &bp->g ); } SECITEM_FreeItem(&rsabp->modulus,PR_FALSE); PORT_Free(rsabp); } if (blindingParamsList.cVar) { PR_DestroyCondVar(blindingParamsList.cVar); blindingParamsList.cVar = NULL; } if (blindingParamsList.lock) { SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); blindingParamsList.lock = NULL; } coBPInit.initialized = 0; coBPInit.inProgress = 0; coBPInit.status = 0; } /* * need a central place for this function to free up all the memory that * free_bl may have allocated along the way. Currently only RSA does this, * so I've put it here for now. */ void BL_Cleanup(void) { RSA_Cleanup(); } PRBool bl_parentForkedAfterC_Initialize; /* * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. */ void BL_SetForkState(PRBool forked) { bl_parentForkedAfterC_Initialize = forked; }