/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is TransforMiiX XSLT processor code. * * The Initial Developer of the Original Code is * The MITRE Corporation. * Portions created by the Initial Developer are Copyright (C) 1999 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Keith Visco (Original Author) * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "txNodeSet.h" #include "TxLog.h" #include "nsMemory.h" /** * Implementation of an XPath nodeset */ static const PRInt32 kTxNodeSetMinSize = 4; static const PRInt32 kTxNodeSetGrowFactor = 2; #define kForward 1 #define kReversed -1 txNodeSet::txNodeSet(txResultRecycler* aRecycler) : txAExprResult(aRecycler), mStart(nsnull), mEnd(nsnull), mStartBuffer(nsnull), mEndBuffer(nsnull), mDirection(kForward), mMarks(nsnull) { } txNodeSet::txNodeSet(const txXPathNode& aNode, txResultRecycler* aRecycler) : txAExprResult(aRecycler), mStart(nsnull), mEnd(nsnull), mStartBuffer(nsnull), mEndBuffer(nsnull), mDirection(kForward), mMarks(nsnull) { if (!ensureGrowSize(1)) { return; } new(mStart) txXPathNode(aNode); ++mEnd; } txNodeSet::txNodeSet(const txNodeSet& aSource, txResultRecycler* aRecycler) : txAExprResult(aRecycler), mStart(nsnull), mEnd(nsnull), mStartBuffer(nsnull), mEndBuffer(nsnull), mDirection(kForward), mMarks(nsnull) { append(aSource); } txNodeSet::~txNodeSet() { delete [] mMarks; if (mStartBuffer) { while (mStart < mEnd) { mStart->~txXPathNode(); ++mStart; } nsMemory::Free(mStartBuffer); } } nsresult txNodeSet::add(const txXPathNode& aNode) { NS_ASSERTION(mDirection == kForward, "only append(aNode) is supported on reversed nodesets"); if (isEmpty()) { return append(aNode); } PRBool dupe; txXPathNode* pos = findPosition(aNode, mStart, mEnd, dupe); if (dupe) { return NS_OK; } // save pos, ensureGrowSize messes with the pointers PRInt32 moveSize = mEnd - pos; PRInt32 offset = pos - mStart; if (!ensureGrowSize(1)) { return NS_ERROR_OUT_OF_MEMORY; } // set pos to where it was pos = mStart + offset; if (moveSize > 0) { memmove(pos + 1, pos, moveSize * sizeof(txXPathNode)); } new(pos) txXPathNode(aNode); ++mEnd; return NS_OK; } nsresult txNodeSet::add(const txNodeSet& aNodes) { return add(aNodes, copyElements); } nsresult txNodeSet::addAndTransfer(txNodeSet* aNodes) { // failure is out-of-memory, transfer didn't happen nsresult rv = add(*aNodes, transferElements); NS_ENSURE_SUCCESS(rv, rv); #ifdef TX_DONT_RECYCLE_BUFFER if (aNodes->mStartBuffer) { nsMemory::Free(aNodes->mStartBuffer); aNodes->mStartBuffer = aNodes->mEndBuffer = nsnull; } #endif aNodes->mStart = aNodes->mEnd = aNodes->mStartBuffer; return NS_OK; } /** * add(aNodeSet, aTransferOp) * * The code is optimized to make a minimum number of calls to * Node::compareDocumentPosition. The idea is this: * We have the two nodesets (number indicate "document position") * * 1 3 7 <- source 1 * 2 3 6 8 9 <- source 2 * _ _ _ _ _ _ _ _ <- result * * * When merging these nodesets into the result, the nodes are transfered * in chunks to the end of the buffer so that each chunk does not contain * a node from the other nodeset, in document order. * * We select the last non-transfered node in the first nodeset and find * where in the other nodeset it would be inserted. In this case we would * take the 7 from the first nodeset and find the position between the * 6 and 8 in the second. We then take the nodes after the insert-position * and transfer them to the end of the resulting nodeset. Which in this case * means that we first transfered the 8 and 9 nodes, giving us the following: * * 1 3 7 <- source 1 * 2 3 6 <- source 2 * _ _ _ _ _ _ 8 9 <- result * * The corresponding procedure is done for the second nodeset, that is * the insertion position of the 6 in the first nodeset is found, which * is between the 3 and the 7. The 7 is memmoved (as it stays within * the same nodeset) to the result buffer. * * As the result buffer is filled from the end, it is safe to share the * buffer between this nodeset and the result. * * This is repeated until both of the nodesets are empty. * * If we find a duplicate node when searching for where insertposition we * check for sequences of duplicate nodes, which can be optimized. * */ nsresult txNodeSet::add(const txNodeSet& aNodes, transferOp aTransfer) { NS_ASSERTION(mDirection == kForward, "only append(aNode) is supported on reversed nodesets"); if (aNodes.isEmpty()) { return NS_OK; } if (!ensureGrowSize(aNodes.size())) { return NS_ERROR_OUT_OF_MEMORY; } // This is probably a rather common case, so lets try to shortcut. if (mStart == mEnd || txXPathNodeUtils::comparePosition(mEnd[-1], *aNodes.mStart) < 0) { aTransfer(mEnd, aNodes.mStart, aNodes.mEnd); mEnd += aNodes.size(); return NS_OK; } // Last element in this nodeset txXPathNode* thisPos = mEnd; // Last element of the other nodeset txXPathNode* otherPos = aNodes.mEnd; // Pointer to the insertion point in this nodeset txXPathNode* insertPos = mEndBuffer; PRBool dupe; txXPathNode* pos; PRInt32 count; while (thisPos > mStart || otherPos > aNodes.mStart) { // Find where the last remaining node of this nodeset would // be inserted in the other nodeset. if (thisPos > mStart) { pos = findPosition(thisPos[-1], aNodes.mStart, otherPos, dupe); if (dupe) { --thisPos; // this is already added // check dupe sequence while (thisPos > mStart && pos > aNodes.mStart && thisPos[-1] == pos[-1]) { --thisPos; --pos; } } } else { pos = aNodes.mStart; } // Transfer the otherNodes after the insertion point to the result count = otherPos - pos; if (count > 0) { insertPos -= count; aTransfer(insertPos, pos, otherPos); otherPos -= count; } // Find where the last remaining node of the otherNodeset would // be inserted in this nodeset. if (otherPos > aNodes.mStart) { pos = findPosition(otherPos[-1], mStart, thisPos, dupe); if (dupe) { --otherPos; // this is already added // check dupe sequence while (otherPos > aNodes.mStart && pos > mStart && otherPos[-1] == pos[-1]) { --otherPos; --pos; } } } else { pos = mStart; } // Move the nodes from this nodeset after the insertion point // to the result count = thisPos - pos; if (count > 0) { insertPos -= count; memmove(insertPos, pos, count * sizeof(txXPathNode)); thisPos -= count; } } mStart = insertPos; mEnd = mEndBuffer; return NS_OK; } /** * Append API * These functions should be used with care. * They are intended to be used when the caller assures that the resulting * nodeset remains in document order. * Abuse will break document order, and cause errors in the result. * These functions are significantly faster than the add API, as no * order info operations will be performed. */ nsresult txNodeSet::append(const txXPathNode& aNode) { if (!ensureGrowSize(1)) { return NS_ERROR_OUT_OF_MEMORY; } if (mDirection == kForward) { new(mEnd) txXPathNode(aNode); ++mEnd; return NS_OK; } new(--mStart) txXPathNode(aNode); return NS_OK; } nsresult txNodeSet::append(const txNodeSet& aNodes) { NS_ASSERTION(mDirection == kForward, "only append(aNode) is supported on reversed nodesets"); if (aNodes.isEmpty()) { return NS_OK; } PRInt32 appended = aNodes.size(); if (!ensureGrowSize(appended)) { return NS_ERROR_OUT_OF_MEMORY; } copyElements(mEnd, aNodes.mStart, aNodes.mEnd); mEnd += appended; return NS_OK; } nsresult txNodeSet::mark(PRInt32 aIndex) { NS_ASSERTION(aIndex >= 0 && mStart && mEnd - mStart > aIndex, "index out of bounds"); if (!mMarks) { PRInt32 length = size(); mMarks = new PRPackedBool[length]; NS_ENSURE_TRUE(mMarks, NS_ERROR_OUT_OF_MEMORY); memset(mMarks, 0, length * sizeof(PRPackedBool)); } if (mDirection == kForward) { mMarks[aIndex] = PR_TRUE; } else { mMarks[size() - aIndex - 1] = PR_TRUE; } return NS_OK; } nsresult txNodeSet::sweep() { if (!mMarks) { // sweep everything clear(); } PRInt32 chunk, pos = 0; PRInt32 length = size(); txXPathNode* insertion = mStartBuffer; while (pos < length) { while (pos < length && !mMarks[pos]) { // delete unmarked mStart[pos].~txXPathNode(); ++pos; } // find chunk to move chunk = 0; while (pos < length && mMarks[pos]) { ++pos; ++chunk; } // move chunk if (chunk > 0) { memmove(insertion, mStart + pos - chunk, chunk * sizeof(txXPathNode)); insertion += chunk; } } mStart = mStartBuffer; mEnd = insertion; delete [] mMarks; mMarks = nsnull; return NS_OK; } void txNodeSet::clear() { while (mStart < mEnd) { mStart->~txXPathNode(); ++mStart; } #ifdef TX_DONT_RECYCLE_BUFFER if (mStartBuffer) { nsMemory::Free(mStartBuffer); mStartBuffer = mEndBuffer = nsnull; } #endif mStart = mEnd = mStartBuffer; delete [] mMarks; mMarks = nsnull; mDirection = kForward; } PRInt32 txNodeSet::indexOf(const txXPathNode& aNode) const { NS_ASSERTION(mDirection == kForward, "only append(aNode) is supported on reversed nodesets"); if (!mStart || mStart == mEnd) { return -1; } PRInt32 counter = 0; txXPathNode* pos = mStart; for (; pos < mEnd; ++counter, ++pos) { if (*pos == aNode) { return counter; } } return -1; } const txXPathNode& txNodeSet::get(PRInt32 aIndex) const { if (mDirection == kForward) { return mStart[aIndex]; } return mEnd[-aIndex - 1]; } short txNodeSet::getResultType() { return txAExprResult::NODESET; } PRBool txNodeSet::booleanValue() { return !isEmpty(); } double txNodeSet::numberValue() { nsAutoString str; stringValue(str); return Double::toDouble(str); } void txNodeSet::stringValue(nsAString& aStr) { NS_ASSERTION(mDirection == kForward, "only append(aNode) is supported on reversed nodesets"); if (isEmpty()) { return; } txXPathNodeUtils::appendNodeValue(get(0), aStr); } nsAString* txNodeSet::stringValuePointer() { return nsnull; } PRBool txNodeSet::ensureGrowSize(PRInt32 aSize) { // check if there is enough place in the buffer as is if (mDirection == kForward && aSize <= mEndBuffer - mEnd) { return PR_TRUE; } if (mDirection == kReversed && aSize <= mStart - mStartBuffer) { return PR_TRUE; } // check if we just have to align mStart to have enough space PRInt32 oldSize = mEnd - mStart; PRInt32 oldLength = mEndBuffer - mStartBuffer; PRInt32 ensureSize = oldSize + aSize; if (ensureSize <= oldLength) { // just move the buffer txXPathNode* dest = mStartBuffer; if (mDirection == kReversed) { dest = mEndBuffer - oldSize; } memmove(dest, mStart, oldSize * sizeof(txXPathNode)); mStart = dest; mEnd = dest + oldSize; return PR_TRUE; } // This isn't 100% safe. But until someone manages to make a 1gig nodeset // it should be ok. PRInt32 newLength = PR_MAX(oldLength, kTxNodeSetMinSize); while (newLength < ensureSize) { newLength *= kTxNodeSetGrowFactor; } txXPathNode* newArr = NS_STATIC_CAST(txXPathNode*, nsMemory::Alloc(newLength * sizeof(txXPathNode))); if (!newArr) { return PR_FALSE; } txXPathNode* dest = newArr; if (mDirection == kReversed) { dest += newLength - oldSize; } if (oldSize > 0) { memcpy(dest, mStart, oldSize * sizeof(txXPathNode)); } if (mStartBuffer) { #ifdef DEBUG memset(mStartBuffer, 0, (mEndBuffer - mStartBuffer) * sizeof(txXPathNode)); #endif nsMemory::Free(mStartBuffer); } mStartBuffer = newArr; mEndBuffer = mStartBuffer + newLength; mStart = dest; mEnd = dest + oldSize; return PR_TRUE; } txXPathNode* txNodeSet::findPosition(const txXPathNode& aNode, txXPathNode* aFirst, txXPathNode* aLast, PRBool& aDupe) const { aDupe = PR_FALSE; if (aLast - aFirst <= 2) { // If we search 2 nodes or less there is no point in further divides txXPathNode* pos = aFirst; for (; pos < aLast; ++pos) { PRIntn cmp = txXPathNodeUtils::comparePosition(aNode, *pos); if (cmp < 0) { return pos; } if (cmp == 0) { aDupe = PR_TRUE; return pos; } } return pos; } // (cannot add two pointers) txXPathNode* midpos = aFirst + (aLast - aFirst) / 2; PRIntn cmp = txXPathNodeUtils::comparePosition(aNode, *midpos); if (cmp == 0) { aDupe = PR_TRUE; return midpos; } if (cmp > 0) { return findPosition(aNode, midpos + 1, aLast, aDupe); } // midpos excluded as end of range return findPosition(aNode, aFirst, midpos, aDupe); } /* static */ void txNodeSet::copyElements(txXPathNode* aDest, const txXPathNode* aStart, const txXPathNode* aEnd) { const txXPathNode* pos = aStart; while (pos < aEnd) { new(aDest) txXPathNode(*pos); ++aDest; ++pos; } } /* static */ void txNodeSet::transferElements(txXPathNode* aDest, const txXPathNode* aStart, const txXPathNode* aEnd) { memcpy(aDest, aStart, (aEnd - aStart) * sizeof(txXPathNode)); }