RetroZilla/jpeg/jdmerge.c

1025 lines
30 KiB
C

/*
* jdmerge.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains code for merged upsampling/color conversion.
*
* This file combines functions from jdsample.c and jdcolor.c;
* read those files first to understand what's going on.
*
* When the chroma components are to be upsampled by simple replication
* (ie, box filtering), we can save some work in color conversion by
* calculating all the output pixels corresponding to a pair of chroma
* samples at one time. In the conversion equations
* R = Y + K1 * Cr
* G = Y + K2 * Cb + K3 * Cr
* B = Y + K4 * Cb
* only the Y term varies among the group of pixels corresponding to a pair
* of chroma samples, so the rest of the terms can be calculated just once.
* At typical sampling ratios, this eliminates half or three-quarters of the
* multiplications needed for color conversion.
*
* This file currently provides implementations for the following cases:
* YCbCr => RGB color conversion only.
* Sampling ratios of 2h1v or 2h2v.
* No scaling needed at upsample time.
* Corner-aligned (non-CCIR601) sampling alignment.
* Other special cases could be added, but in most applications these are
* the only common cases. (For uncommon cases we fall back on the more
* general code in jdsample.c and jdcolor.c.)
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef UPSAMPLE_MERGING_SUPPORTED
#ifdef HAVE_MMX_INTEL_MNEMONICS
__int64 const1 = 0x59BA0000D24B59BA; // Cr_r Cr_b Cr_g Cr_r
__int64 const2 = 0x00007168E9FA0000; // Cb-r Cb_b Cb_g Cb_r
__int64 const5 = 0x0000D24B59BA0000; // Cr_b Cr_g Cr_r Cr_b
__int64 const6 = 0x7168E9FA00007168; // Cb_b Cb_g Cb_r Cb_b
// constants for factors (One_Half/fix(x)) << 2
__int64 const05 = 0x0001000000000001; // Cr_r Cr_b Cr_g Cr_r
__int64 const15 = 0x00000001FFFA0000; // Cb-r Cb_b Cb_g Cb_r
__int64 const45 = 0x0000000000010000; // Cr_b Cr_g Cr_r Cr_b
__int64 const55 = 0x0001FFFA00000001; // Cb_b Cb_g Cb_r Cb_b
#endif
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Pointer to routine to do actual upsampling/conversion of one row group */
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf));
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* For 2:1 vertical sampling, we produce two output rows at a time.
* We need a "spare" row buffer to hold the second output row if the
* application provides just a one-row buffer; we also use the spare
* to discard the dummy last row if the image height is odd.
*/
JSAMPROW spare_row;
boolean spare_full; /* T if spare buffer is occupied */
JDIMENSION out_row_width; /* samples per output row */
JDIMENSION rows_to_go; /* counts rows remaining in image */
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCC->RGB colorspace conversion.
* This is taken directly from jdcolor.c; see that file for more info.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int i;
INT32 x;
SHIFT_TEMPS
upsample->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
upsample->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
upsample->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
upsample->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
}
}
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_merged_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the spare buffer empty */
upsample->spare_full = FALSE;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* The control routine just handles the row buffering considerations.
*/
METHODDEF(void)
merged_2v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 2:1 vertical sampling case: may need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPROW work_ptrs[2];
JDIMENSION num_rows; /* number of rows returned to caller */
if (upsample->spare_full) {
/* If we have a spare row saved from a previous cycle, just return it. */
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
1, upsample->out_row_width);
num_rows = 1;
upsample->spare_full = FALSE;
} else {
/* Figure number of rows to return to caller. */
num_rows = 2;
/* Not more than the distance to the end of the image. */
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
/* Create output pointer array for upsampler. */
work_ptrs[0] = output_buf[*out_row_ctr];
if (num_rows > 1) {
work_ptrs[1] = output_buf[*out_row_ctr + 1];
} else {
work_ptrs[1] = upsample->spare_row;
upsample->spare_full = TRUE;
}
/* Now do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
}
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (! upsample->spare_full)
(*in_row_group_ctr)++;
}
METHODDEF(void)
merged_1v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 1:1 vertical sampling case: much easier, never need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Just do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
output_buf + *out_row_ctr);
/* Adjust counts */
(*out_row_ctr)++;
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by the control routines to do
* the actual upsampling/conversion. One row group is processed per call.
*
* Note: since we may be writing directly into application-supplied buffers,
* we have to be honest about the output width; we can't assume the buffer
* has been rounded up to an even width.
*/
/*
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
*/
METHODDEF(void)
h2v1_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr0 = input_buf[0][in_row_group_ctr];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr = output_buf[0];
/* Loop for each pair of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 2 Y values and emit 2 pixels */
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr0);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
*/
#ifdef HAVE_MMX_INTEL_MNEMONICS
__inline METHODDEF(void)
h2v2_merged_upsample_orig (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf);
__inline METHODDEF(void)
h2v2_merged_upsample_mmx (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf);
#endif
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf);
#ifdef HAVE_MMX_INTEL_MNEMONICS
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
if (MMXAvailable && (cinfo->image_width >= 8))
h2v2_merged_upsample_mmx (cinfo, input_buf, in_row_group_ctr, output_buf);
else
h2v2_merged_upsample_orig (cinfo, input_buf, in_row_group_ctr, output_buf);
}
__inline METHODDEF(void)
h2v2_merged_upsample_orig (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
*/
__inline METHODDEF(void)
h2v2_merged_upsample_mmx (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
// added for MMX
__int64 const128 = 0x0080008000800080;
__int64 empty = 0x0000000000000000;
__int64 davemask = 0x0000FFFFFFFF0000;
////////////////////////////////
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
// Added for MMX
register int width = cinfo->image_width;
int cols = cinfo->output_width;
int cols_asm = (cols >> 3);
int diff = cols - (cols_asm<<3);
int cols_asm_copy = cols_asm;
///////////////////////////////////////
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
_asm
{
mov esi, inptr00
mov eax, inptr01
mov ebx, inptr2
mov ecx, inptr1
mov edi, outptr0
mov edx, outptr1
do_next16:
movd mm0, [ebx] ; Cr7 Cr6.....Cr1 Cr0
pxor mm6, mm6
punpcklbw mm0, mm0 ; Cr3 Cr3 Cr2 Cr2 Cr1 Cr1 Cr0 Cr0
movq mm7, const128
punpcklwd mm0, mm0 ; Cr1 Cr1 Cr1 Cr1 Cr0 Cr0 Cr0 Cr0
movq mm4, mm0
punpcklbw mm0, mm6 ; Cr0 Cr0 Cr0 Cr0
psubsw mm0, mm7 ; Cr0 - 128:Cr0-128:Cr0-128:Cr0 -128
movd mm1, [ecx] ; Cb7 Cb6...... Cb1 Cb0
psllw mm0, 2 ; left shift by 2 bits
punpcklbw mm1, mm1 ; Cb3 Cb3 Cb2 Cb2 Cb1 Cb1 Cb0 Cb0
paddsw mm0, const05 ; add (one_half/fix(x)) << 2
punpcklwd mm1, mm1 ; Cb1 Cb1 Cb1 Cb1 Cb0 Cb0 Cb0 Cb0
movq mm5, mm1
pmulhw mm0, const1 ; multiply by (fix(x) >> 1)
punpcklbw mm1, mm6 ; Cb0 Cb0 Cb0 Cb0
punpckhbw mm4, mm6 ; Cr1 Cr1 Cr1 Cr1
psubsw mm1, mm7 ; Cb0 - 128:Cb0-128:Cb0-128:Cb0 -128
punpckhbw mm5, mm6 ; Cb1 Cb1 Cb1 Cb1
psllw mm1, 2 ; left shift by 2 bits
paddsw mm1, const15 ; add (one_half/fix(x)) << 2
psubsw mm4, mm7 ; Cr1 - 128:Cr1-128:Cr1-128:Cr1 -128
psubsw mm5, mm7 ; Cb1 - 128:Cb1-128:Cb1-128:Cb1 -128
pmulhw mm1, const2 ; multiply by (fix(x) >> 1)
psllw mm4, 2 ; left shift by 2 bits
psllw mm5, 2 ; left shift by 2 bits
paddsw mm4, const45 ; add (one_half/fix(x)) << 2
movd mm7, [esi] ; Y13 Y12 Y9 Y8 Y5 Y4 Y1 Y0
pmulhw mm4, const5 ; multiply by (fix(x) >> 1)
movq mm6, mm7
punpcklbw mm7, mm7 ; Y5 Y5 Y4 Y4 Y1 Y1 Y0 Y0
paddsw mm5, const55 ; add (one_half/fix(x)) << 2
paddsw mm0, mm1 ; cred0 cbl0 cgr0 cred0
movq mm1, mm7
pmulhw mm5, const6 ; multiply by (fix(x) >> 1)
movq mm2, mm0 ; cred0 cbl0 cgr0 cred0
punpcklwd mm7, mm6 ; Y5 Y4 Y1 Y1 Y1 Y0 Y0 Y0
pand mm2, davemask ; 0 cbl0 cgr0 0
psrlq mm1, 16 ; 0 0 Y5 Y5 Y4 Y4 Y1 Y1
psrlq mm2, 16 ; 0 0 cbl0 cgr0
punpcklbw mm7, empty ; Y1 Y0 Y0 Y0
paddsw mm4, mm5 ; cbl1 cgr1 cred1 cbl1
movq mm3, mm4 ; cbl1 cgr1 cred1 cbl1
pand mm3, davemask ; 0 cgr1 cred1 0
paddsw mm7, mm0 ; r1 b0 g0 r0
psllq mm3, 16 ; cgr1 cred1 0 0
movq mm6, mm1 ; 0 0 Y5 Y5 Y4 Y4 Y1 Y1
por mm2, mm3 ; cgr1 cred1 cbl0 cgr0
punpcklbw mm6, empty ; Y4 Y4 Y1 Y1
movd mm3, [eax] ; Y15 Y14 Y11 Y10 Y7 Y6 Y3 Y2
paddsw mm6, mm2 ; g4 r4 b1 g1
packuswb mm7, mm6 ; g4 r4 b1 g1 r1 b0 g0 r0
movq mm6, mm3 ; Y15 Y14 Y11 Y10 Y7 Y6 Y3 Y2
punpcklbw mm3, mm3 ; Y7 Y7 Y6 Y6 Y3 Y3 Y2 Y2
movq [edi], mm7 ; move to memory g4 r4 b1 g1 r1 b0 g0 r0
movq mm5, mm3 ; Y7 Y7 Y6 Y6 Y3 Y3 Y2 Y2
punpcklwd mm3, mm6 ; X X X X Y3 Y2 Y2 Y2
punpcklbw mm3, empty ; Y3 Y2 Y2 Y2
psrlq mm5, 16 ; 0 0 Y7 Y7 Y6 Y6 Y3 Y3
paddsw mm3, mm0 ; r3 b2 g2 r2
movq mm6, mm5 ; 0 0 Y7 Y7 Y6 Y6 Y3 Y3
movq mm0, mm1 ; 0 0 Y5 Y5 Y4 Y4 Y1 Y1
punpckldq mm6, mm6 ; X X X X Y6 Y6 Y3 Y3
punpcklbw mm6, empty ; Y6 Y6 Y3 Y3
psrlq mm1, 24 ; 0 0 0 0 0 Y5 Y5 Y4
paddsw mm6, mm2 ; g6 r6 b3 g3
packuswb mm3, mm6 ; g6 r6 b3 g3 r3 b2 g2 r2
movq mm2, mm5 ; 0 0 Y7 Y7 Y6 Y6 Y3 Y3
psrlq mm0, 32 ; 0 0 0 0 0 0 Y5 Y5
movq [edx], mm3 ; move to memory g6 r6 b3 g3 r3 b2 g2 r2
punpcklwd mm1, mm0 ; X X X X Y5 Y5 Y5 Y4
psrlq mm5, 24 ; 0 0 0 0 0 Y7 Y7 Y6
movd mm0, [ebx] ; Cr9 Cr8.....Cr3 Cr2
psrlq mm2, 32 ; 0 0 0 0 0 0 Y7 Y7
psrlq mm0, 16
punpcklbw mm1, empty ; Y5 Y5 Y5 Y4
punpcklwd mm5, mm2 ; X X X X Y7 Y7 Y7 Y6
paddsw mm1, mm4 ; b5 g5 r5 b4
punpcklbw mm5, empty ; Y7 Y7 Y7 Y6
pxor mm6, mm6 ; clear mm6 registr
punpcklbw mm0, mm0 ; X X X X Cr3 Cr3 Cr2 Cr2
paddsw mm5, mm4 ; b7 g7 r7 b6
punpcklwd mm0, mm0 ; Cr3 Cr3 Cr3 Cr3 Cr2 Cr2 Cr2 Cr2
movq mm4, mm0
movd mm3, [ecx] ; Cb9 Cb8...... Cb3 Cb2
punpcklbw mm0, mm6 ; Cr2 Cr2 Cr2 Cr2
psrlq mm3, 16
psubsw mm0, const128 ; Cr2 - 128:Cr2-128:Cr2-128:Cr2 -128
punpcklbw mm3, mm3 ; X X X X Cb3 Cb3 Cb2 Cb2
psllw mm0, 2 ; left shift by 2 bits
paddsw mm0, const05 ; add (one_half/fix(x)) << 2
punpcklwd mm3, mm3 ; Cb3 Cb3 Cb3 Cb3 Cb2 Cb2 Cb2 Cb2
movq mm7, mm3
pmulhw mm0, const1 ; multiply by (fix(x) >> 1)
punpcklbw mm3, mm6 ; Cb2 Cb2 Cb2 Cb2
psubsw mm3, const128 ; Cb0 - 128:Cb0-128:Cb0-128:Cb0 -128
punpckhbw mm4, mm6 ; Cr3 Cr3 Cr3 Cr3
psllw mm3, 2 ; left shift by 2 bits
paddsw mm3, const15 ; add (one_half/fix(x)) << 2
punpckhbw mm7, mm6 ; Cb3 Cb3 Cb3 Cb3
pmulhw mm3, const2 ; multiply by (fix(x) >> 1)
psubsw mm7, const128 ; Cb3 - 128:Cb3-128:Cb3-128:Cb3 -128
paddsw mm0, mm3 ; cred2 cbl2 cgr2 cred2
psllw mm7, 2 ; left shift by 2 bits
psubsw mm4, const128 ; Cr3 - 128:Cr3-128:Cr3-128:Cr3 -128
movd mm3, [esi+4] ; Y21 Y20 Y17 Y16 Y13 Y12 Y9 Y8
psllw mm4, 2 ; left shift by 2 bits
paddsw mm7, const55 ; add (one_half/fix(x)) << 2
movq mm6, mm3 ; Y21 Y20 Y17 Y16 Y13 Y12 Y9 Y8
movq mm2, mm0
pand mm2, davemask
punpcklbw mm3, mm3 ; Y13 Y13 Y12 Y12 Y9 Y9 Y8 Y8
psrlq mm2, 16
paddsw mm4, const45 ; add (one_half/fix(x)) << 2
punpcklwd mm3, mm6 ; X X X X Y9 Y8 Y8 Y8
pmulhw mm4, const5 ; multiply by (fix(x) >> 1)
pmulhw mm7, const6 ; multiply by (fix(x) >> 1)
punpcklbw mm3, empty ; Y9 Y8 Y8 Y8
paddsw mm4, mm7 ; cbl3 cgr3 cred3 cbl3
paddsw mm3, mm0 ; r9 b8 g8 r8
movq mm7, mm4
packuswb mm1, mm3 ; r9 b8 g8 r8 b5 g5 r5 b4
movd mm3, [eax+4] ; Y23 Y22 Y19 Y18 Y15 Y14 Y11 Y10
pand mm7, davemask
psrlq mm6, 8 ; 0 Y21 Y20 Y17 Y16 Y13 Y12 Y9
psllq mm7, 16
movq [edi+8], mm1 ; move to memory r9 b8 g8 r8 b5 g5 r5 b4
por mm2, mm7
movq mm7, mm3 ; Y23 Y22 Y19 Y18 Y15 Y14 Y11 Y10
punpcklbw mm3, mm3 ; X X X X Y11 Y11 Y10 Y10
pxor mm1, mm1
punpcklwd mm3, mm7 ; X X X X Y11 Y10 Y10 Y10
punpcklbw mm3, mm1 ; Y11 Y10 Y10 Y10
psrlq mm7, 8 ; 0 Y23 Y22 Y19 Y18 Y15 Y14 Y11
paddsw mm3, mm0 ; r11 b10 g10 r10
movq mm0, mm7 ; 0 Y23 Y22 Y19 Y18 Y15 Y14 Y11
packuswb mm5, mm3 ; r11 b10 g10 r10 b7 g7 r7 b6
punpcklbw mm7, mm7 ; X X X X Y14 Y14 Y11 Y11
movq [edx+8], mm5 ; move to memory r11 b10 g10 r10 b7 g7 r7 b6
movq mm3, mm6 ; 0 Y21 Y20 Y17 Y16 Y13 Y12 Y9
punpcklbw mm6, mm6 ; X X X X Y12 Y12 Y9 Y9
punpcklbw mm7, mm1 ; Y14 Y14 Y11 Y11
punpcklbw mm6, mm1 ; Y12 Y12 Y9 Y9
paddsw mm7, mm2 ; g14 r14 b11 g11
paddsw mm6, mm2 ; g12 r12 b9 g9
psrlq mm3, 8 ; 0 0 Y21 Y20 Y17 Y16 Y13 Y12
movq mm1, mm3 ; 0 0 Y21 Y20 Y17 Y16 Y13 Y12
punpcklbw mm3, mm3 ; X X X X Y13 Y13 Y12 Y12
add esi, 8
psrlq mm3, 16 ; X X X X X X Y13 Y13 modified on 09/24
punpcklwd mm1, mm3 ; X X X X Y13 Y13 Y13 Y12
add eax, 8
psrlq mm0, 8 ; 0 0 Y23 Y22 Y19 Y18 Y15 Y14
punpcklbw mm1, empty ; Y13 Y13 Y13 Y12
movq mm5, mm0 ; 0 0 Y23 Y22 Y19 Y18 Y15 Y14
punpcklbw mm0, mm0 ; X X X X Y15 Y15 Y14 Y14
paddsw mm1, mm4 ; b13 g13 r13 b12
psrlq mm0, 16 ; X X X X X X Y15 Y15
add edi, 24
punpcklwd mm5, mm0 ; X X X X Y15 Y15 Y15 Y14
packuswb mm6, mm1 ; b13 g13 r13 b12 g12 r12 b9 g9
add edx, 24
punpcklbw mm5, empty ; Y15 Y15 Y15 Y14
add ebx, 4
paddsw mm5, mm4 ; b15 g15 r15 b14
movq [edi-8], mm6 ; move to memory b13 g13 r13 b12 g12 r12 b9 g9
packuswb mm7, mm5 ; b15 g15 r15 b14 g14 r14 b11 g11
add ecx, 4
movq [edx-8], mm7 ; move to memory b15 g15 r15 b14 g14 r14 b11 g11
dec cols_asm
jnz do_next16
EMMS
}
inptr1 += (cols_asm_copy<<2);
inptr2 += (cols_asm_copy<<2);
inptr00 += (cols_asm_copy<<3);
inptr01 += (cols_asm_copy<<3);
outptr0 += cols_asm_copy*24;
outptr1 += cols_asm_copy*24;
//for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
/*cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];*/
/* Fetch 4 Y values and emit 4 pixels */
/*y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
} */
for (col = diff >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
//if (cinfo->output_width & 1) {
if (diff & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
#else
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
#endif
/*
* Module initialization routine for merged upsampling/color conversion.
*
* NB: this is called under the conditions determined by use_merged_upsample()
* in jdmaster.c. That routine MUST correspond to the actual capabilities
* of this module; no safety checks are made here.
*/
GLOBAL(void)
jinit_merged_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
upsample = (my_upsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_merged_upsample;
upsample->pub.need_context_rows = FALSE;
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
if (cinfo->max_v_samp_factor == 2) {
upsample->pub.upsample = merged_2v_upsample;
upsample->upmethod = h2v2_merged_upsample;
/* Allocate a spare row buffer */
upsample->spare_row = (JSAMPROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
} else {
upsample->pub.upsample = merged_1v_upsample;
upsample->upmethod = h2v1_merged_upsample;
/* No spare row needed */
upsample->spare_row = NULL;
}
build_ycc_rgb_table(cinfo);
}
#endif /* UPSAMPLE_MERGING_SUPPORTED */