RetroZilla/jpeg/jidctfst.c

1651 lines
50 KiB
C

/*
* jidctfst.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* The dequantized coefficients are not integers because the AA&N scaling
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
* so that the first and second IDCT rounds have the same input scaling.
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
* avoid a descaling shift; this compromises accuracy rather drastically
* for small quantization table entries, but it saves a lot of shifts.
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
* so we use a much larger scaling factor to preserve accuracy.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
* declared INT32, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
* We assume that int right shift is unsigned if INT32 right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
#else
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
#endif
#ifdef HAVE_MMX_INTEL_MNEMONICS
__inline GLOBAL(void)
jpeg_idct_ifast_mmx (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col);
__inline GLOBAL(void)
jpeg_idct_ifast_orig (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col);
#endif
GLOBAL(void)
jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col);
#ifdef HAVE_MMX_INTEL_MNEMONICS
GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
if (MMXAvailable)
jpeg_idct_ifast_mmx(cinfo, compptr, coef_block, output_buf, output_col);
else
jpeg_idct_ifast_orig(cinfo, compptr, coef_block, output_buf, output_col);
}
#else
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL (void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif
#ifdef HAVE_MMX_INTEL_MNEMONICS
_inline GLOBAL(void)
jpeg_idct_ifast_orig (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
inptr[DCTSIZE*7]) == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
wsptr[7]) == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
static __int64 fix_141 = 0x5a825a825a825a82;
static __int64 fix_184n261 = 0xcf04cf04cf04cf04;
static __int64 fix_184 = 0x7641764176417641;
static __int64 fix_n184 = 0x896f896f896f896f;
static __int64 fix_108n184 = 0xcf04cf04cf04cf04;
static __int64 const_0x0080 = 0x0080008000800080;
__inline GLOBAL(void)
jpeg_idct_ifast_mmx (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR inptr,
JSAMPARRAY outptr, JDIMENSION output_col)
{
int16 workspace[DCTSIZE2 + 4]; /* buffers data between passes */
int16 *wsptr=workspace;
int16 *quantptr=compptr->dct_table;
__asm{
mov edi, quantptr
mov ebx, inptr
mov esi, wsptr
add esi, 0x07 ;align wsptr to qword
and esi, 0xfffffff8 ;align wsptr to qword
mov eax, esi
/* Odd part */
movq mm1, [ebx + 8*10] ;load inptr[DCTSIZE*5]
pmullw mm1, [edi + 8*10] ;tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
movq mm0, [ebx + 8*6] ;load inptr[DCTSIZE*3]
pmullw mm0, [edi + 8*6] ;tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
movq mm3, [ebx + 8*2] ;load inptr[DCTSIZE*1]
movq mm2, mm1 ;copy tmp6 /* phase 6 */
pmullw mm3, [edi + 8*2] ;tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
movq mm4, [ebx + 8*14] ;load inptr[DCTSIZE*1]
paddw mm1, mm0 ;z13 = tmp6 + tmp5;
pmullw mm4, [edi + 8*14] ;tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
psubw mm2, mm0 ;z10 = tmp6 - tmp5
psllw mm2, 2 ;shift z10
movq mm0, mm2 ;copy z10
pmulhw mm2, fix_184n261 ;MULTIPLY( z12, FIX_1_847759065); /* 2*c2 */
movq mm5, mm3 ;copy tmp4
pmulhw mm0, fix_n184 ;MULTIPLY(z10, -FIX_1_847759065); /* 2*c2 */
paddw mm3, mm4 ;z11 = tmp4 + tmp7;
movq mm6, mm3 ;copy z11 /* phase 5 */
psubw mm5, mm4 ;z12 = tmp4 - tmp7;
psubw mm6, mm1 ;z11-z13
psllw mm5, 2 ;shift z12
movq mm4, [ebx + 8*12] ;load inptr[DCTSIZE*6], even part
movq mm7, mm5 ;copy z12
pmulhw mm5, fix_108n184 ;MULT(z12, (FIX_1_08-FIX_1_84)) //- z5; /* 2*(c2-c6) */ even part
paddw mm3, mm1 ;tmp7 = z11 + z13;
/* Even part */
pmulhw mm7, fix_184 ;MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) //+ z5; /* -2*(c2+c6) */
psllw mm6, 2
movq mm1, [ebx + 8*4] ;load inptr[DCTSIZE*2]
pmullw mm1, [edi + 8*4] ;tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
paddw mm0, mm5 ;tmp10
pmullw mm4, [edi + 8*12] ;tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
paddw mm2, mm7 ;tmp12
pmulhw mm6, fix_141 ;tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
psubw mm2, mm3 ;tmp6 = tmp12 - tmp7
movq mm5, mm1 ;copy tmp1
paddw mm1, mm4 ;tmp13= tmp1 + tmp3; /* phases 5-3 */
psubw mm5, mm4 ;tmp1-tmp3
psubw mm6, mm2 ;tmp5 = tmp11 - tmp6;
movq [esi+8*0], mm1 ;save tmp13 in workspace
psllw mm5, 2 ;shift tmp1-tmp3
movq mm7, [ebx + 8*0] ;load inptr[DCTSIZE*0]
pmulhw mm5, fix_141 ;MULTIPLY(tmp1 - tmp3, FIX_1_414213562)
paddw mm0, mm6 ;tmp4 = tmp10 + tmp5;
pmullw mm7, [edi + 8*0] ;tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
movq mm4, [ebx + 8*8] ;load inptr[DCTSIZE*4]
pmullw mm4, [edi + 8*8] ;tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
psubw mm5, mm1 ;tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
movq [esi+8*4], mm0 ;save tmp4 in workspace
movq mm1, mm7 ;copy tmp0 /* phase 3 */
movq [esi+8*2], mm5 ;save tmp12 in workspace
psubw mm1, mm4 ;tmp11 = tmp0 - tmp2;
paddw mm7, mm4 ;tmp10 = tmp0 + tmp2;
movq mm5, mm1 ;copy tmp11
paddw mm1, [esi+8*2] ;tmp1 = tmp11 + tmp12;
movq mm4, mm7 ;copy tmp10 /* phase 2 */
paddw mm7, [esi+8*0] ;tmp0 = tmp10 + tmp13;
psubw mm4, [esi+8*0] ;tmp3 = tmp10 - tmp13;
movq mm0, mm7 ;copy tmp0
psubw mm5, [esi+8*2] ;tmp2 = tmp11 - tmp12;
paddw mm7, mm3 ;wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
psubw mm0, mm3 ;wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
movq [esi + 8*0], mm7 ;wsptr[DCTSIZE*0]
movq mm3, mm1 ;copy tmp1
movq [esi + 8*14], mm0 ;wsptr[DCTSIZE*7]
paddw mm1, mm2 ;wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
psubw mm3, mm2 ;wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
movq [esi + 8*2], mm1 ;wsptr[DCTSIZE*1]
movq mm1, mm4 ;copy tmp3
movq [esi + 8*12], mm3 ;wsptr[DCTSIZE*6]
paddw mm4, [esi+8*4] ;wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
psubw mm1, [esi+8*4] ;wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
movq [esi + 8*8], mm4
movq mm7, mm5 ;copy tmp2
paddw mm5, mm6 ;wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5)
movq [esi+8*6], mm1 ;
psubw mm7, mm6 ;wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
movq [esi + 8*4], mm5
movq [esi + 8*10], mm7
/*****************************************************************/
add edi, 8
add ebx, 8
add esi, 8
/*****************************************************************/
movq mm1, [ebx + 8*10] ;load inptr[DCTSIZE*5]
pmullw mm1, [edi + 8*10] ;tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
movq mm0, [ebx + 8*6] ;load inptr[DCTSIZE*3]
pmullw mm0, [edi + 8*6] ;tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
movq mm3, [ebx + 8*2] ;load inptr[DCTSIZE*1]
movq mm2, mm1 ;copy tmp6 /* phase 6 */
pmullw mm3, [edi + 8*2] ;tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
movq mm4, [ebx + 8*14] ;load inptr[DCTSIZE*1]
paddw mm1, mm0 ;z13 = tmp6 + tmp5;
pmullw mm4, [edi + 8*14] ;tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
psubw mm2, mm0 ;z10 = tmp6 - tmp5
psllw mm2, 2 ;shift z10
movq mm0, mm2 ;copy z10
pmulhw mm2, fix_184n261 ;MULTIPLY( z12, FIX_1_847759065); /* 2*c2 */
movq mm5, mm3 ;copy tmp4
pmulhw mm0, fix_n184 ;MULTIPLY(z10, -FIX_1_847759065); /* 2*c2 */
paddw mm3, mm4 ;z11 = tmp4 + tmp7;
movq mm6, mm3 ;copy z11 /* phase 5 */
psubw mm5, mm4 ;z12 = tmp4 - tmp7;
psubw mm6, mm1 ;z11-z13
psllw mm5, 2 ;shift z12
movq mm4, [ebx + 8*12] ;load inptr[DCTSIZE*6], even part
movq mm7, mm5 ;copy z12
pmulhw mm5, fix_108n184 ;MULT(z12, (FIX_1_08-FIX_1_84)) //- z5; /* 2*(c2-c6) */ even part
paddw mm3, mm1 ;tmp7 = z11 + z13;
/* Even part */
pmulhw mm7, fix_184 ;MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) //+ z5; /* -2*(c2+c6) */
psllw mm6, 2
movq mm1, [ebx + 8*4] ;load inptr[DCTSIZE*2]
pmullw mm1, [edi + 8*4] ;tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
paddw mm0, mm5 ;tmp10
pmullw mm4, [edi + 8*12] ;tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
paddw mm2, mm7 ;tmp12
pmulhw mm6, fix_141 ;tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
psubw mm2, mm3 ;tmp6 = tmp12 - tmp7
movq mm5, mm1 ;copy tmp1
paddw mm1, mm4 ;tmp13= tmp1 + tmp3; /* phases 5-3 */
psubw mm5, mm4 ;tmp1-tmp3
psubw mm6, mm2 ;tmp5 = tmp11 - tmp6;
movq [esi+8*0], mm1 ;save tmp13 in workspace
psllw mm5, 2 ;shift tmp1-tmp3
movq mm7, [ebx + 8*0] ;load inptr[DCTSIZE*0]
paddw mm0, mm6 ;tmp4 = tmp10 + tmp5;
pmulhw mm5, fix_141 ;MULTIPLY(tmp1 - tmp3, FIX_1_414213562)
pmullw mm7, [edi + 8*0] ;tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
movq mm4, [ebx + 8*8] ;load inptr[DCTSIZE*4]
pmullw mm4, [edi + 8*8] ;tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
psubw mm5, mm1 ;tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
movq [esi+8*4], mm0 ;save tmp4 in workspace
movq mm1, mm7 ;copy tmp0 /* phase 3 */
movq [esi+8*2], mm5 ;save tmp12 in workspace
psubw mm1, mm4 ;tmp11 = tmp0 - tmp2;
paddw mm7, mm4 ;tmp10 = tmp0 + tmp2;
movq mm5, mm1 ;copy tmp11
paddw mm1, [esi+8*2] ;tmp1 = tmp11 + tmp12;
movq mm4, mm7 ;copy tmp10 /* phase 2 */
paddw mm7, [esi+8*0] ;tmp0 = tmp10 + tmp13;
psubw mm4, [esi+8*0] ;tmp3 = tmp10 - tmp13;
movq mm0, mm7 ;copy tmp0
psubw mm5, [esi+8*2] ;tmp2 = tmp11 - tmp12;
paddw mm7, mm3 ;wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
psubw mm0, mm3 ;wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
movq [esi + 8*0], mm7 ;wsptr[DCTSIZE*0]
movq mm3, mm1 ;copy tmp1
movq [esi + 8*14], mm0 ;wsptr[DCTSIZE*7]
paddw mm1, mm2 ;wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
psubw mm3, mm2 ;wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
movq [esi + 8*2], mm1 ;wsptr[DCTSIZE*1]
movq mm1, mm4 ;copy tmp3
movq [esi + 8*12], mm3 ;wsptr[DCTSIZE*6]
paddw mm4, [esi+8*4] ;wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
psubw mm1, [esi+8*4] ;wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
movq [esi + 8*8], mm4
movq mm7, mm5 ;copy tmp2
paddw mm5, mm6 ;wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5)
movq [esi+8*6], mm1 ;
psubw mm7, mm6 ;wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
movq [esi + 8*4], mm5
movq [esi + 8*10], mm7
/*****************************************************************/
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
/*****************************************************************/
/* Even part */
mov esi, eax
mov eax, outptr
// tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
// tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
// tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
// tmp14 = ((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6]);
movq mm0, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3]
movq mm1, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7]
movq mm2, mm0
movq mm3, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3]
paddw mm0, mm1 ;wsptr[0,tmp10],[xxx],[0,tmp13],[xxx]
movq mm4, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7]
psubw mm2, mm1 ;wsptr[0,tmp11],[xxx],[0,tmp14],[xxx]
movq mm6, mm0
movq mm5, mm3
paddw mm3, mm4 ;wsptr[1,tmp10],[xxx],[1,tmp13],[xxx]
movq mm1, mm2
psubw mm5, mm4 ;wsptr[1,tmp11],[xxx],[1,tmp14],[xxx]
punpcklwd mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[xxx],[xxx]
movq mm7, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7]
punpckhwd mm6, mm3 ;wsptr[0,tmp13],[1,tmp13],[xxx],[xxx]
movq mm3, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3]
punpckldq mm0, mm6 ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13]
punpcklwd mm1, mm5 ;wsptr[0,tmp11],[1,tmp11],[xxx],[xxx]
movq mm4, mm3
movq mm6, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3]
punpckhwd mm2, mm5 ;wsptr[0,tmp14],[1,tmp14],[xxx],[xxx]
movq mm5, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7]
punpckldq mm1, mm2 ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14]
paddw mm3, mm5 ;wsptr[2,tmp10],[xxx],[2,tmp13],[xxx]
movq mm2, mm6
psubw mm4, mm5 ;wsptr[2,tmp11],[xxx],[2,tmp14],[xxx]
paddw mm6, mm7 ;wsptr[3,tmp10],[xxx],[3,tmp13],[xxx]
movq mm5, mm3
punpcklwd mm3, mm6 ;wsptr[2,tmp10],[3,tmp10],[xxx],[xxx]
psubw mm2, mm7 ;wsptr[3,tmp11],[xxx],[3,tmp14],[xxx]
punpckhwd mm5, mm6 ;wsptr[2,tmp13],[3,tmp13],[xxx],[xxx]
movq mm7, mm4
punpckldq mm3, mm5 ;wsptr[2,tmp10],[3,tmp10],[2,tmp13],[3,tmp13]
punpcklwd mm4, mm2 ;wsptr[2,tmp11],[3,tmp11],[xxx],[xxx]
punpckhwd mm7, mm2 ;wsptr[2,tmp14],[3,tmp14],[xxx],[xxx]
punpckldq mm4, mm7 ;wsptr[2,tmp11],[3,tmp11],[2,tmp14],[3,tmp14]
movq mm6, mm1
// mm0 = ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13]
// mm1 = ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14]
movq mm2, mm0
punpckhdq mm6, mm4 ;wsptr[0,tmp14],[1,tmp14],[2,tmp14],[3,tmp14]
punpckldq mm1, mm4 ;wsptr[0,tmp11],[1,tmp11],[2,tmp11],[3,tmp11]
psllw mm6, 2
pmulhw mm6, fix_141
punpckldq mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[2,tmp10],[3,tmp10]
punpckhdq mm2, mm3 ;wsptr[0,tmp13],[1,tmp13],[2,tmp13],[3,tmp13]
movq mm7, mm0
// tmp0 = tmp10 + tmp13;
// tmp3 = tmp10 - tmp13;
paddw mm0, mm2 ;[0,tmp0],[1,tmp0],[2,tmp0],[3,tmp0]
psubw mm7, mm2 ;[0,tmp3],[1,tmp3],[2,tmp3],[3,tmp3]
// tmp12 = MULTIPLY(tmp14, FIX_1_414213562) - tmp13;
psubw mm6, mm2 ;wsptr[0,tmp12],[1,tmp12],[2,tmp12],[3,tmp12]
// tmp1 = tmp11 + tmp12;
// tmp2 = tmp11 - tmp12;
movq mm5, mm1
/* Odd part */
// z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
// z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
// z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
// z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
movq mm3, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3]
paddw mm1, mm6 ;[0,tmp1],[1,tmp1],[2,tmp1],[3,tmp1]
movq mm4, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7]
psubw mm5, mm6 ;[0,tmp2],[1,tmp2],[2,tmp2],[3,tmp2]
movq mm6, mm3
punpckldq mm3, mm4 ;wsptr[0,0],[0,1],[0,4],[0,5]
punpckhdq mm4, mm6 ;wsptr[0,6],[0,7],[0,2],[0,3]
movq mm2, mm3
//Save tmp0 and tmp1 in wsptr
movq [esi+8*0], mm0 ;save tmp0
paddw mm2, mm4 ;wsptr[xxx],[0,z11],[xxx],[0,z13]
//Continue with z10 --- z13
movq mm6, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3]
psubw mm3, mm4 ;wsptr[xxx],[0,z12],[xxx],[0,z10]
movq mm0, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7]
movq mm4, mm6
movq [esi+8*1], mm1 ;save tmp1
punpckldq mm6, mm0 ;wsptr[1,0],[1,1],[1,4],[1,5]
punpckhdq mm0, mm4 ;wsptr[1,6],[1,7],[1,2],[1,3]
movq mm1, mm6
//Save tmp2 and tmp3 in wsptr
paddw mm6, mm0 ;wsptr[xxx],[1,z11],[xxx],[1,z13]
movq mm4, mm2
//Continue with z10 --- z13
movq [esi+8*2], mm5 ;save tmp2
punpcklwd mm2, mm6 ;wsptr[xxx],[xxx],[0,z11],[1,z11]
psubw mm1, mm0 ;wsptr[xxx],[1,z12],[xxx],[1,z10]
punpckhwd mm4, mm6 ;wsptr[xxx],[xxx],[0,z13],[1,z13]
movq mm0, mm3
punpcklwd mm3, mm1 ;wsptr[xxx],[xxx],[0,z12],[1,z12]
movq [esi+8*3], mm7 ;save tmp3
punpckhwd mm0, mm1 ;wsptr[xxx],[xxx],[0,z10],[1,z10]
movq mm6, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3]
punpckhdq mm0, mm2 ;wsptr[0,z10],[1,z10],[0,z11],[1,z11]
movq mm7, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7]
punpckhdq mm3, mm4 ;wsptr[0,z12],[1,z12],[0,z13],[1,z13]
movq mm1, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3]
movq mm4, mm6
punpckldq mm6, mm7 ;wsptr[2,0],[2,1],[2,4],[2,5]
movq mm5, mm1
punpckhdq mm7, mm4 ;wsptr[2,6],[2,7],[2,2],[2,3]
movq mm2, mm6
movq mm4, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7]
paddw mm6, mm7 ;wsptr[xxx],[2,z11],[xxx],[2,z13]
psubw mm2, mm7 ;wsptr[xxx],[2,z12],[xxx],[2,z10]
punpckldq mm1, mm4 ;wsptr[3,0],[3,1],[3,4],[3,5]
punpckhdq mm4, mm5 ;wsptr[3,6],[3,7],[3,2],[3,3]
movq mm7, mm1
paddw mm1, mm4 ;wsptr[xxx],[3,z11],[xxx],[3,z13]
psubw mm7, mm4 ;wsptr[xxx],[3,z12],[xxx],[3,z10]
movq mm5, mm6
punpcklwd mm6, mm1 ;wsptr[xxx],[xxx],[2,z11],[3,z11]
punpckhwd mm5, mm1 ;wsptr[xxx],[xxx],[2,z13],[3,z13]
movq mm4, mm2
punpcklwd mm2, mm7 ;wsptr[xxx],[xxx],[2,z12],[3,z12]
punpckhwd mm4, mm7 ;wsptr[xxx],[xxx],[2,z10],[3,z10]
punpckhdq mm4, mm6 ;wsptr[2,z10],[3,z10],[2,z11],[3,z11]
punpckhdq mm2, mm5 ;wsptr[2,z12],[3,z12],[2,z13],[3,z13]
movq mm5, mm0
punpckldq mm0, mm4 ;wsptr[0,z10],[1,z10],[2,z10],[3,z10]
punpckhdq mm5, mm4 ;wsptr[0,z11],[1,z11],[2,z11],[3,z11]
movq mm4, mm3
punpckhdq mm4, mm2 ;wsptr[0,z13],[1,z13],[2,z13],[3,z13]
movq mm1, mm5
punpckldq mm3, mm2 ;wsptr[0,z12],[1,z12],[2,z12],[3,z12]
// tmp7 = z11 + z13; /* phase 5 */
// tmp8 = z11 - z13; /* phase 5 */
psubw mm1, mm4 ;tmp8
paddw mm5, mm4 ;tmp7
// tmp21 = MULTIPLY(tmp8, FIX_1_414213562); /* 2*c4 */
psllw mm1, 2
psllw mm0, 2
pmulhw mm1, fix_141 ;tmp21
// tmp20 = MULTIPLY(z12, (FIX_1_082392200- FIX_1_847759065)) /* 2*(c2-c6) */
// + MULTIPLY(z10, - FIX_1_847759065); /* 2*c2 */
psllw mm3, 2
movq mm7, mm0
pmulhw mm7, fix_n184
movq mm6, mm3
movq mm2, [esi+8*0] ;tmp0,final1
pmulhw mm6, fix_108n184
// tmp22 = MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) /* -2*(c2+c6) */
// + MULTIPLY(z12, FIX_1_847759065); /* 2*c2 */
movq mm4, mm2 ;final1
pmulhw mm0, fix_184n261
paddw mm2, mm5 ;tmp0+tmp7,final1
pmulhw mm3, fix_184
psubw mm4, mm5 ;tmp0-tmp7,final1
// tmp6 = tmp22 - tmp7; /* phase 2 */
psraw mm2, 5 ;outptr[0,0],[1,0],[2,0],[3,0],final1
paddsw mm2, const_0x0080 ;final1
paddw mm7, mm6 ;tmp20
psraw mm4, 5 ;outptr[0,7],[1,7],[2,7],[3,7],final1
paddsw mm4, const_0x0080 ;final1
paddw mm3, mm0 ;tmp22
// tmp5 = tmp21 - tmp6;
psubw mm3, mm5 ;tmp6
// tmp4 = tmp20 + tmp5;
movq mm0, [esi+8*1] ;tmp1,final2
psubw mm1, mm3 ;tmp5
movq mm6, mm0 ;final2
paddw mm0, mm3 ;tmp1+tmp6,final2
/* Final output stage: scale down by a factor of 8 and range-limit */
// outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
// & RANGE_MASK]; final1
// outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
// & RANGE_MASK]; final2
psubw mm6, mm3 ;tmp1-tmp6,final2
psraw mm0, 5 ;outptr[0,1],[1,1],[2,1],[3,1]
paddsw mm0, const_0x0080
psraw mm6, 5 ;outptr[0,6],[1,6],[2,6],[3,6]
paddsw mm6, const_0x0080 ;need to check this value
packuswb mm0, mm4 ;out[0,1],[1,1],[2,1],[3,1],[0,7],[1,7],[2,7],[3,7]
movq mm5, [esi+8*2] ;tmp2,final3
packuswb mm2, mm6 ;out[0,0],[1,0],[2,0],[3,0],[0,6],[1,6],[2,6],[3,6]
// outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
// & RANGE_MASK]; final3
paddw mm7, mm1 ;tmp4
movq mm3, mm5
paddw mm5, mm1 ;tmp2+tmp5
psubw mm3, mm1 ;tmp2-tmp5
psraw mm5, 5 ;outptr[0,2],[1,2],[2,2],[3,2]
paddsw mm5, const_0x0080
movq mm4, [esi+8*3] ;tmp3,final4
psraw mm3, 5 ;outptr[0,5],[1,5],[2,5],[3,5]
paddsw mm3, const_0x0080
// outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
// & RANGE_MASK]; final4
movq mm6, mm4
paddw mm4, mm7 ;tmp3+tmp4
psubw mm6, mm7 ;tmp3-tmp4
psraw mm4, 5 ;outptr[0,4],[1,4],[2,4],[3,4]
mov ecx, [eax]
paddsw mm4, const_0x0080
psraw mm6, 5 ;outptr[0,3],[1,3],[2,3],[3,3]
paddsw mm6, const_0x0080
packuswb mm5, mm4 ;out[0,2],[1,2],[2,2],[3,2],[0,4],[1,4],[2,4],[3,4]
packuswb mm6, mm3 ;out[0,3],[1,3],[2,3],[3,3],[0,5],[1,5],[2,5],[3,5]
movq mm4, mm2
movq mm7, mm5
punpcklbw mm2, mm0 ;out[0,0],[0,1],[1,0],[1,1],[2,0],[2,1],[3,0],[3,1]
punpckhbw mm4, mm0 ;out[0,6],[0,7],[1,6],[1,7],[2,6],[2,7],[3,6],[3,7]
movq mm1, mm2
punpcklbw mm5, mm6 ;out[0,2],[0,3],[1,2],[1,3],[2,2],[2,3],[3,2],[3,3]
add eax, 4
punpckhbw mm7, mm6 ;out[0,4],[0,5],[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]
punpcklwd mm2, mm5 ;out[0,0],[0,1],[0,2],[0,3],[1,0],[1,1],[1,2],[1,3]
add ecx, output_col
movq mm6, mm7
punpckhwd mm1, mm5 ;out[2,0],[2,1],[2,2],[2,3],[3,0],[3,1],[3,2],[3,3]
movq mm0, mm2
punpcklwd mm6, mm4 ;out[0,4],[0,5],[0,6],[0,7],[1,4],[1,5],[1,6],[1,7]
mov ebx, [eax]
punpckldq mm2, mm6 ;out[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7]
add eax, 4
movq mm3, mm1
add ebx, output_col
punpckhwd mm7, mm4 ;out[2,4],[2,5],[2,6],[2,7],[3,4],[3,5],[3,6],[3,7]
movq [ecx], mm2
punpckhdq mm0, mm6 ;out[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]
mov ecx, [eax]
add eax, 4
add ecx, output_col
movq [ebx], mm0
punpckldq mm1, mm7 ;out[2,0],[2,1],[2,2],[2,3],[2,4],[2,5],[2,6],[2,7]
mov ebx, [eax]
add ebx, output_col
punpckhdq mm3, mm7 ;out[3,0],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7]
movq [ecx], mm1
movq [ebx], mm3
/*******************************************************************/
add esi, 64
add eax, 4
/*******************************************************************/
// tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
// tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
// tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
// tmp14 = ((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6]);
movq mm0, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3]
movq mm1, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7]
movq mm2, mm0
movq mm3, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3]
paddw mm0, mm1 ;wsptr[0,tmp10],[xxx],[0,tmp13],[xxx]
movq mm4, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7]
psubw mm2, mm1 ;wsptr[0,tmp11],[xxx],[0,tmp14],[xxx]
movq mm6, mm0
movq mm5, mm3
paddw mm3, mm4 ;wsptr[1,tmp10],[xxx],[1,tmp13],[xxx]
movq mm1, mm2
psubw mm5, mm4 ;wsptr[1,tmp11],[xxx],[1,tmp14],[xxx]
punpcklwd mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[xxx],[xxx]
movq mm7, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7]
punpckhwd mm6, mm3 ;wsptr[0,tmp13],[1,tmp13],[xxx],[xxx]
movq mm3, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3]
punpckldq mm0, mm6 ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13]
punpcklwd mm1, mm5 ;wsptr[0,tmp11],[1,tmp11],[xxx],[xxx]
movq mm4, mm3
movq mm6, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3]
punpckhwd mm2, mm5 ;wsptr[0,tmp14],[1,tmp14],[xxx],[xxx]
movq mm5, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7]
punpckldq mm1, mm2 ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14]
paddw mm3, mm5 ;wsptr[2,tmp10],[xxx],[2,tmp13],[xxx]
movq mm2, mm6
psubw mm4, mm5 ;wsptr[2,tmp11],[xxx],[2,tmp14],[xxx]
paddw mm6, mm7 ;wsptr[3,tmp10],[xxx],[3,tmp13],[xxx]
movq mm5, mm3
punpcklwd mm3, mm6 ;wsptr[2,tmp10],[3,tmp10],[xxx],[xxx]
psubw mm2, mm7 ;wsptr[3,tmp11],[xxx],[3,tmp14],[xxx]
punpckhwd mm5, mm6 ;wsptr[2,tmp13],[3,tmp13],[xxx],[xxx]
movq mm7, mm4
punpckldq mm3, mm5 ;wsptr[2,tmp10],[3,tmp10],[2,tmp13],[3,tmp13]
punpcklwd mm4, mm2 ;wsptr[2,tmp11],[3,tmp11],[xxx],[xxx]
punpckhwd mm7, mm2 ;wsptr[2,tmp14],[3,tmp14],[xxx],[xxx]
punpckldq mm4, mm7 ;wsptr[2,tmp11],[3,tmp11],[2,tmp14],[3,tmp14]
movq mm6, mm1
// mm0 = ;wsptr[0,tmp10],[1,tmp10],[0,tmp13],[1,tmp13]
// mm1 = ;wsptr[0,tmp11],[1,tmp11],[0,tmp14],[1,tmp14]
movq mm2, mm0
punpckhdq mm6, mm4 ;wsptr[0,tmp14],[1,tmp14],[2,tmp14],[3,tmp14]
punpckldq mm1, mm4 ;wsptr[0,tmp11],[1,tmp11],[2,tmp11],[3,tmp11]
psllw mm6, 2
pmulhw mm6, fix_141
punpckldq mm0, mm3 ;wsptr[0,tmp10],[1,tmp10],[2,tmp10],[3,tmp10]
punpckhdq mm2, mm3 ;wsptr[0,tmp13],[1,tmp13],[2,tmp13],[3,tmp13]
movq mm7, mm0
// tmp0 = tmp10 + tmp13;
// tmp3 = tmp10 - tmp13;
paddw mm0, mm2 ;[0,tmp0],[1,tmp0],[2,tmp0],[3,tmp0]
psubw mm7, mm2 ;[0,tmp3],[1,tmp3],[2,tmp3],[3,tmp3]
// tmp12 = MULTIPLY(tmp14, FIX_1_414213562) - tmp13;
psubw mm6, mm2 ;wsptr[0,tmp12],[1,tmp12],[2,tmp12],[3,tmp12]
// tmp1 = tmp11 + tmp12;
// tmp2 = tmp11 - tmp12;
movq mm5, mm1
/* Odd part */
// z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
// z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
// z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
// z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
movq mm3, [esi+8*0] ;wsptr[0,0],[0,1],[0,2],[0,3]
paddw mm1, mm6 ;[0,tmp1],[1,tmp1],[2,tmp1],[3,tmp1]
movq mm4, [esi+8*1] ;wsptr[0,4],[0,5],[0,6],[0,7]
psubw mm5, mm6 ;[0,tmp2],[1,tmp2],[2,tmp2],[3,tmp2]
movq mm6, mm3
punpckldq mm3, mm4 ;wsptr[0,0],[0,1],[0,4],[0,5]
punpckhdq mm4, mm6 ;wsptr[0,6],[0,7],[0,2],[0,3]
movq mm2, mm3
//Save tmp0 and tmp1 in wsptr
movq [esi+8*0], mm0 ;save tmp0
paddw mm2, mm4 ;wsptr[xxx],[0,z11],[xxx],[0,z13]
//Continue with z10 --- z13
movq mm6, [esi+8*2] ;wsptr[1,0],[1,1],[1,2],[1,3]
psubw mm3, mm4 ;wsptr[xxx],[0,z12],[xxx],[0,z10]
movq mm0, [esi+8*3] ;wsptr[1,4],[1,5],[1,6],[1,7]
movq mm4, mm6
movq [esi+8*1], mm1 ;save tmp1
punpckldq mm6, mm0 ;wsptr[1,0],[1,1],[1,4],[1,5]
punpckhdq mm0, mm4 ;wsptr[1,6],[1,7],[1,2],[1,3]
movq mm1, mm6
//Save tmp2 and tmp3 in wsptr
paddw mm6, mm0 ;wsptr[xxx],[1,z11],[xxx],[1,z13]
movq mm4, mm2
//Continue with z10 --- z13
movq [esi+8*2], mm5 ;save tmp2
punpcklwd mm2, mm6 ;wsptr[xxx],[xxx],[0,z11],[1,z11]
psubw mm1, mm0 ;wsptr[xxx],[1,z12],[xxx],[1,z10]
punpckhwd mm4, mm6 ;wsptr[xxx],[xxx],[0,z13],[1,z13]
movq mm0, mm3
punpcklwd mm3, mm1 ;wsptr[xxx],[xxx],[0,z12],[1,z12]
movq [esi+8*3], mm7 ;save tmp3
punpckhwd mm0, mm1 ;wsptr[xxx],[xxx],[0,z10],[1,z10]
movq mm6, [esi+8*4] ;wsptr[2,0],[2,1],[2,2],[2,3]
punpckhdq mm0, mm2 ;wsptr[0,z10],[1,z10],[0,z11],[1,z11]
movq mm7, [esi+8*5] ;wsptr[2,4],[2,5],[2,6],[2,7]
punpckhdq mm3, mm4 ;wsptr[0,z12],[1,z12],[0,z13],[1,z13]
movq mm1, [esi+8*6] ;wsptr[3,0],[3,1],[3,2],[3,3]
movq mm4, mm6
punpckldq mm6, mm7 ;wsptr[2,0],[2,1],[2,4],[2,5]
movq mm5, mm1
punpckhdq mm7, mm4 ;wsptr[2,6],[2,7],[2,2],[2,3]
movq mm2, mm6
movq mm4, [esi+8*7] ;wsptr[3,4],[3,5],[3,6],[3,7]
paddw mm6, mm7 ;wsptr[xxx],[2,z11],[xxx],[2,z13]
psubw mm2, mm7 ;wsptr[xxx],[2,z12],[xxx],[2,z10]
punpckldq mm1, mm4 ;wsptr[3,0],[3,1],[3,4],[3,5]
punpckhdq mm4, mm5 ;wsptr[3,6],[3,7],[3,2],[3,3]
movq mm7, mm1
paddw mm1, mm4 ;wsptr[xxx],[3,z11],[xxx],[3,z13]
psubw mm7, mm4 ;wsptr[xxx],[3,z12],[xxx],[3,z10]
movq mm5, mm6
punpcklwd mm6, mm1 ;wsptr[xxx],[xxx],[2,z11],[3,z11]
punpckhwd mm5, mm1 ;wsptr[xxx],[xxx],[2,z13],[3,z13]
movq mm4, mm2
punpcklwd mm2, mm7 ;wsptr[xxx],[xxx],[2,z12],[3,z12]
punpckhwd mm4, mm7 ;wsptr[xxx],[xxx],[2,z10],[3,z10]
punpckhdq mm4, mm6 ;wsptr[2,z10],[3,z10],[2,z11],[3,z11]
punpckhdq mm2, mm5 ;wsptr[2,z12],[3,z12],[2,z13],[3,z13]
movq mm5, mm0
punpckldq mm0, mm4 ;wsptr[0,z10],[1,z10],[2,z10],[3,z10]
punpckhdq mm5, mm4 ;wsptr[0,z11],[1,z11],[2,z11],[3,z11]
movq mm4, mm3
punpckhdq mm4, mm2 ;wsptr[0,z13],[1,z13],[2,z13],[3,z13]
movq mm1, mm5
punpckldq mm3, mm2 ;wsptr[0,z12],[1,z12],[2,z12],[3,z12]
// tmp7 = z11 + z13; /* phase 5 */
// tmp8 = z11 - z13; /* phase 5 */
psubw mm1, mm4 ;tmp8
paddw mm5, mm4 ;tmp7
// tmp21 = MULTIPLY(tmp8, FIX_1_414213562); /* 2*c4 */
psllw mm1, 2
psllw mm0, 2
pmulhw mm1, fix_141 ;tmp21
// tmp20 = MULTIPLY(z12, (FIX_1_082392200- FIX_1_847759065)) /* 2*(c2-c6) */
// + MULTIPLY(z10, - FIX_1_847759065); /* 2*c2 */
psllw mm3, 2
movq mm7, mm0
pmulhw mm7, fix_n184
movq mm6, mm3
movq mm2, [esi+8*0] ;tmp0,final1
pmulhw mm6, fix_108n184
// tmp22 = MULTIPLY(z10,(FIX_1_847759065 - FIX_2_613125930)) /* -2*(c2+c6) */
// + MULTIPLY(z12, FIX_1_847759065); /* 2*c2 */
movq mm4, mm2 ;final1
pmulhw mm0, fix_184n261
paddw mm2, mm5 ;tmp0+tmp7,final1
pmulhw mm3, fix_184
psubw mm4, mm5 ;tmp0-tmp7,final1
// tmp6 = tmp22 - tmp7; /* phase 2 */
psraw mm2, 5 ;outptr[0,0],[1,0],[2,0],[3,0],final1
paddsw mm2, const_0x0080 ;final1
paddw mm7, mm6 ;tmp20
psraw mm4, 5 ;outptr[0,7],[1,7],[2,7],[3,7],final1
paddsw mm4, const_0x0080 ;final1
paddw mm3, mm0 ;tmp22
// tmp5 = tmp21 - tmp6;
psubw mm3, mm5 ;tmp6
// tmp4 = tmp20 + tmp5;
movq mm0, [esi+8*1] ;tmp1,final2
psubw mm1, mm3 ;tmp5
movq mm6, mm0 ;final2
paddw mm0, mm3 ;tmp1+tmp6,final2
/* Final output stage: scale down by a factor of 8 and range-limit */
// outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
// & RANGE_MASK]; final1
// outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
// & RANGE_MASK]; final2
psubw mm6, mm3 ;tmp1-tmp6,final2
psraw mm0, 5 ;outptr[0,1],[1,1],[2,1],[3,1]
paddsw mm0, const_0x0080
psraw mm6, 5 ;outptr[0,6],[1,6],[2,6],[3,6]
paddsw mm6, const_0x0080 ;need to check this value
packuswb mm0, mm4 ;out[0,1],[1,1],[2,1],[3,1],[0,7],[1,7],[2,7],[3,7]
movq mm5, [esi+8*2] ;tmp2,final3
packuswb mm2, mm6 ;out[0,0],[1,0],[2,0],[3,0],[0,6],[1,6],[2,6],[3,6]
// outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
// & RANGE_MASK]; final3
paddw mm7, mm1 ;tmp4
movq mm3, mm5
paddw mm5, mm1 ;tmp2+tmp5
psubw mm3, mm1 ;tmp2-tmp5
psraw mm5, 5 ;outptr[0,2],[1,2],[2,2],[3,2]
paddsw mm5, const_0x0080
movq mm4, [esi+8*3] ;tmp3,final4
psraw mm3, 5 ;outptr[0,5],[1,5],[2,5],[3,5]
paddsw mm3, const_0x0080
// outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
// & RANGE_MASK];
// outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
// & RANGE_MASK]; final4
movq mm6, mm4
paddw mm4, mm7 ;tmp3+tmp4
psubw mm6, mm7 ;tmp3-tmp4
psraw mm4, 5 ;outptr[0,4],[1,4],[2,4],[3,4]
mov ecx, [eax]
paddsw mm4, const_0x0080
psraw mm6, 5 ;outptr[0,3],[1,3],[2,3],[3,3]
paddsw mm6, const_0x0080
packuswb mm5, mm4 ;out[0,2],[1,2],[2,2],[3,2],[0,4],[1,4],[2,4],[3,4]
packuswb mm6, mm3 ;out[0,3],[1,3],[2,3],[3,3],[0,5],[1,5],[2,5],[3,5]
movq mm4, mm2
movq mm7, mm5
punpcklbw mm2, mm0 ;out[0,0],[0,1],[1,0],[1,1],[2,0],[2,1],[3,0],[3,1]
punpckhbw mm4, mm0 ;out[0,6],[0,7],[1,6],[1,7],[2,6],[2,7],[3,6],[3,7]
movq mm1, mm2
punpcklbw mm5, mm6 ;out[0,2],[0,3],[1,2],[1,3],[2,2],[2,3],[3,2],[3,3]
add eax, 4
punpckhbw mm7, mm6 ;out[0,4],[0,5],[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]
punpcklwd mm2, mm5 ;out[0,0],[0,1],[0,2],[0,3],[1,0],[1,1],[1,2],[1,3]
add ecx, output_col
movq mm6, mm7
punpckhwd mm1, mm5 ;out[2,0],[2,1],[2,2],[2,3],[3,0],[3,1],[3,2],[3,3]
movq mm0, mm2
punpcklwd mm6, mm4 ;out[0,4],[0,5],[0,6],[0,7],[1,4],[1,5],[1,6],[1,7]
mov ebx, [eax]
punpckldq mm2, mm6 ;out[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7]
add eax, 4
movq mm3, mm1
add ebx, output_col
punpckhwd mm7, mm4 ;out[2,4],[2,5],[2,6],[2,7],[3,4],[3,5],[3,6],[3,7]
movq [ecx], mm2
punpckhdq mm0, mm6 ;out[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]
mov ecx, [eax]
add eax, 4
add ecx, output_col
movq [ebx], mm0
punpckldq mm1, mm7 ;out[2,0],[2,1],[2,2],[2,3],[2,4],[2,5],[2,6],[2,7]
mov ebx, [eax]
add ebx, output_col
punpckhdq mm3, mm7 ;out[3,0],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7]
movq [ecx], mm1
movq [ebx], mm3
emms
}
}
#endif
#endif /* DCT_IFAST_SUPPORTED */