mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-14 03:30:17 +01:00
430790c1b1
bug1182667(other parts), bug1117022, bug1190248, bug1192020, bug1185033, bug1199349, bug1199467, bug1199494
897 lines
27 KiB
C
897 lines
27 KiB
C
/*
|
|
* Key Derivation that doesn't use PKCS11
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ssl.h" /* prereq to sslimpl.h */
|
|
#include "certt.h" /* prereq to sslimpl.h */
|
|
#include "keythi.h" /* prereq to sslimpl.h */
|
|
#include "sslimpl.h"
|
|
#ifndef NO_PKCS11_BYPASS
|
|
#include "blapi.h"
|
|
#endif
|
|
|
|
#include "keyhi.h"
|
|
#include "pk11func.h"
|
|
#include "secasn1.h"
|
|
#include "cert.h"
|
|
#include "secmodt.h"
|
|
|
|
#include "sslproto.h"
|
|
#include "sslerr.h"
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
/* make this a macro! */
|
|
#ifdef NOT_A_MACRO
|
|
static void
|
|
buildSSLKey(unsigned char * keyBlock, unsigned int keyLen, SECItem * result,
|
|
const char * label)
|
|
{
|
|
result->type = siBuffer;
|
|
result->data = keyBlock;
|
|
result->len = keyLen;
|
|
PRINT_BUF(100, (NULL, label, keyBlock, keyLen));
|
|
}
|
|
#else
|
|
#define buildSSLKey(keyBlock, keyLen, result, label) \
|
|
{ \
|
|
(result)->type = siBuffer; \
|
|
(result)->data = keyBlock; \
|
|
(result)->len = keyLen; \
|
|
PRINT_BUF(100, (NULL, label, keyBlock, keyLen)); \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* SSL Key generation given pre master secret
|
|
*/
|
|
#ifndef NUM_MIXERS
|
|
#define NUM_MIXERS 9
|
|
#endif
|
|
static const char * const mixers[NUM_MIXERS] = {
|
|
"A",
|
|
"BB",
|
|
"CCC",
|
|
"DDDD",
|
|
"EEEEE",
|
|
"FFFFFF",
|
|
"GGGGGGG",
|
|
"HHHHHHHH",
|
|
"IIIIIIIII"
|
|
};
|
|
|
|
|
|
SECStatus
|
|
ssl3_KeyAndMacDeriveBypass(
|
|
ssl3CipherSpec * pwSpec,
|
|
const unsigned char * cr,
|
|
const unsigned char * sr,
|
|
PRBool isTLS,
|
|
PRBool isExport)
|
|
{
|
|
const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
|
|
unsigned char * key_block = pwSpec->key_block;
|
|
unsigned char * key_block2 = NULL;
|
|
unsigned int block_bytes = 0;
|
|
unsigned int block_needed = 0;
|
|
unsigned int i;
|
|
unsigned int keySize; /* actual size of cipher keys */
|
|
unsigned int effKeySize; /* effective size of cipher keys */
|
|
unsigned int macSize; /* size of MAC secret */
|
|
unsigned int IVSize; /* size of IV */
|
|
PRBool explicitIV = PR_FALSE;
|
|
SECStatus rv = SECFailure;
|
|
SECStatus status = SECSuccess;
|
|
PRBool isFIPS = PR_FALSE;
|
|
PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
|
|
|
|
SECItem srcr;
|
|
SECItem crsr;
|
|
|
|
unsigned char srcrdata[SSL3_RANDOM_LENGTH * 2];
|
|
unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
|
|
PRUint64 md5buf[22];
|
|
PRUint64 shabuf[40];
|
|
|
|
#define md5Ctx ((MD5Context *)md5buf)
|
|
#define shaCtx ((SHA1Context *)shabuf)
|
|
|
|
static const SECItem zed = { siBuffer, NULL, 0 };
|
|
|
|
if (pwSpec->msItem.data == NULL ||
|
|
pwSpec->msItem.len != SSL3_MASTER_SECRET_LENGTH) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return rv;
|
|
}
|
|
|
|
PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
|
|
pwSpec->msItem.len));
|
|
|
|
/* figure out how much is needed */
|
|
macSize = pwSpec->mac_size;
|
|
keySize = cipher_def->key_size;
|
|
effKeySize = cipher_def->secret_key_size;
|
|
IVSize = cipher_def->iv_size;
|
|
if (keySize == 0) {
|
|
effKeySize = IVSize = 0; /* only MACing */
|
|
}
|
|
if (cipher_def->type == type_block &&
|
|
pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
|
|
explicitIV = PR_TRUE;
|
|
}
|
|
block_needed =
|
|
2 * (macSize + effKeySize + ((!isExport && !explicitIV) * IVSize));
|
|
|
|
/*
|
|
* clear out our returned keys so we can recover on failure
|
|
*/
|
|
pwSpec->client.write_key_item = zed;
|
|
pwSpec->client.write_mac_key_item = zed;
|
|
pwSpec->server.write_key_item = zed;
|
|
pwSpec->server.write_mac_key_item = zed;
|
|
|
|
/* initialize the server random, client random block */
|
|
srcr.type = siBuffer;
|
|
srcr.data = srcrdata;
|
|
srcr.len = sizeof srcrdata;
|
|
PORT_Memcpy(srcrdata, sr, SSL3_RANDOM_LENGTH);
|
|
PORT_Memcpy(srcrdata + SSL3_RANDOM_LENGTH, cr, SSL3_RANDOM_LENGTH);
|
|
|
|
/* initialize the client random, server random block */
|
|
crsr.type = siBuffer;
|
|
crsr.data = crsrdata;
|
|
crsr.len = sizeof crsrdata;
|
|
PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
|
|
PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
|
|
PRINT_BUF(100, (NULL, "Key & MAC CRSR", crsr.data, crsr.len));
|
|
|
|
/*
|
|
* generate the key material:
|
|
*/
|
|
if (isTLS) {
|
|
SECItem keyblk;
|
|
|
|
keyblk.type = siBuffer;
|
|
keyblk.data = key_block;
|
|
keyblk.len = block_needed;
|
|
|
|
if (isTLS12) {
|
|
status = TLS_P_hash(HASH_AlgSHA256, &pwSpec->msItem,
|
|
"key expansion", &srcr, &keyblk, isFIPS);
|
|
} else {
|
|
status = TLS_PRF(&pwSpec->msItem, "key expansion", &srcr, &keyblk,
|
|
isFIPS);
|
|
}
|
|
if (status != SECSuccess) {
|
|
goto key_and_mac_derive_fail;
|
|
}
|
|
block_bytes = keyblk.len;
|
|
} else {
|
|
/* key_block =
|
|
* MD5(master_secret + SHA('A' + master_secret +
|
|
* ServerHello.random + ClientHello.random)) +
|
|
* MD5(master_secret + SHA('BB' + master_secret +
|
|
* ServerHello.random + ClientHello.random)) +
|
|
* MD5(master_secret + SHA('CCC' + master_secret +
|
|
* ServerHello.random + ClientHello.random)) +
|
|
* [...];
|
|
*/
|
|
unsigned int made = 0;
|
|
for (i = 0; made < block_needed && i < NUM_MIXERS; ++i) {
|
|
unsigned int outLen;
|
|
unsigned char sha_out[SHA1_LENGTH];
|
|
|
|
SHA1_Begin(shaCtx);
|
|
SHA1_Update(shaCtx, (unsigned char*)(mixers[i]), i+1);
|
|
SHA1_Update(shaCtx, pwSpec->msItem.data, pwSpec->msItem.len);
|
|
SHA1_Update(shaCtx, srcr.data, srcr.len);
|
|
SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
|
|
PORT_Assert(outLen == SHA1_LENGTH);
|
|
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, pwSpec->msItem.data, pwSpec->msItem.len);
|
|
MD5_Update(md5Ctx, sha_out, outLen);
|
|
MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
|
|
PORT_Assert(outLen == MD5_LENGTH);
|
|
made += MD5_LENGTH;
|
|
}
|
|
block_bytes = made;
|
|
}
|
|
PORT_Assert(block_bytes >= block_needed);
|
|
PORT_Assert(block_bytes <= sizeof pwSpec->key_block);
|
|
PRINT_BUF(100, (NULL, "key block", key_block, block_bytes));
|
|
|
|
/*
|
|
* Put the key material where it goes.
|
|
*/
|
|
key_block2 = key_block + block_bytes;
|
|
i = 0; /* now shows how much consumed */
|
|
|
|
/*
|
|
* The key_block is partitioned as follows:
|
|
* client_write_MAC_secret[CipherSpec.hash_size]
|
|
*/
|
|
buildSSLKey(&key_block[i],macSize, &pwSpec->client.write_mac_key_item, \
|
|
"Client Write MAC Secret");
|
|
i += macSize;
|
|
|
|
/*
|
|
* server_write_MAC_secret[CipherSpec.hash_size]
|
|
*/
|
|
buildSSLKey(&key_block[i],macSize, &pwSpec->server.write_mac_key_item, \
|
|
"Server Write MAC Secret");
|
|
i += macSize;
|
|
|
|
if (!keySize) {
|
|
/* only MACing */
|
|
buildSSLKey(NULL, 0, &pwSpec->client.write_key_item, \
|
|
"Client Write Key (MAC only)");
|
|
buildSSLKey(NULL, 0, &pwSpec->server.write_key_item, \
|
|
"Server Write Key (MAC only)");
|
|
buildSSLKey(NULL, 0, &pwSpec->client.write_iv_item, \
|
|
"Client Write IV (MAC only)");
|
|
buildSSLKey(NULL, 0, &pwSpec->server.write_iv_item, \
|
|
"Server Write IV (MAC only)");
|
|
} else if (!isExport) {
|
|
/*
|
|
** Generate Domestic write keys and IVs.
|
|
** client_write_key[CipherSpec.key_material]
|
|
*/
|
|
buildSSLKey(&key_block[i], keySize, &pwSpec->client.write_key_item, \
|
|
"Domestic Client Write Key");
|
|
i += keySize;
|
|
|
|
/*
|
|
** server_write_key[CipherSpec.key_material]
|
|
*/
|
|
buildSSLKey(&key_block[i], keySize, &pwSpec->server.write_key_item, \
|
|
"Domestic Server Write Key");
|
|
i += keySize;
|
|
|
|
if (IVSize > 0) {
|
|
if (explicitIV) {
|
|
static unsigned char zero_block[32];
|
|
PORT_Assert(IVSize <= sizeof zero_block);
|
|
buildSSLKey(&zero_block[0], IVSize, \
|
|
&pwSpec->client.write_iv_item, \
|
|
"Domestic Client Write IV");
|
|
buildSSLKey(&zero_block[0], IVSize, \
|
|
&pwSpec->server.write_iv_item, \
|
|
"Domestic Server Write IV");
|
|
} else {
|
|
/*
|
|
** client_write_IV[CipherSpec.IV_size]
|
|
*/
|
|
buildSSLKey(&key_block[i], IVSize, \
|
|
&pwSpec->client.write_iv_item, \
|
|
"Domestic Client Write IV");
|
|
i += IVSize;
|
|
|
|
/*
|
|
** server_write_IV[CipherSpec.IV_size]
|
|
*/
|
|
buildSSLKey(&key_block[i], IVSize, \
|
|
&pwSpec->server.write_iv_item, \
|
|
"Domestic Server Write IV");
|
|
i += IVSize;
|
|
}
|
|
}
|
|
PORT_Assert(i <= block_bytes);
|
|
} else if (!isTLS) {
|
|
/*
|
|
** Generate SSL3 Export write keys and IVs.
|
|
*/
|
|
unsigned int outLen;
|
|
|
|
/*
|
|
** client_write_key[CipherSpec.key_material]
|
|
** final_client_write_key = MD5(client_write_key +
|
|
** ClientHello.random + ServerHello.random);
|
|
*/
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, &key_block[i], effKeySize);
|
|
MD5_Update(md5Ctx, crsr.data, crsr.len);
|
|
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
|
|
i += effKeySize;
|
|
buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
|
|
"SSL3 Export Client Write Key");
|
|
key_block2 += keySize;
|
|
|
|
/*
|
|
** server_write_key[CipherSpec.key_material]
|
|
** final_server_write_key = MD5(server_write_key +
|
|
** ServerHello.random + ClientHello.random);
|
|
*/
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, &key_block[i], effKeySize);
|
|
MD5_Update(md5Ctx, srcr.data, srcr.len);
|
|
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
|
|
i += effKeySize;
|
|
buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
|
|
"SSL3 Export Server Write Key");
|
|
key_block2 += keySize;
|
|
PORT_Assert(i <= block_bytes);
|
|
|
|
if (IVSize) {
|
|
/*
|
|
** client_write_IV =
|
|
** MD5(ClientHello.random + ServerHello.random);
|
|
*/
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, crsr.data, crsr.len);
|
|
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
|
|
buildSSLKey(key_block2, IVSize, &pwSpec->client.write_iv_item, \
|
|
"SSL3 Export Client Write IV");
|
|
key_block2 += IVSize;
|
|
|
|
/*
|
|
** server_write_IV =
|
|
** MD5(ServerHello.random + ClientHello.random);
|
|
*/
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, srcr.data, srcr.len);
|
|
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
|
|
buildSSLKey(key_block2, IVSize, &pwSpec->server.write_iv_item, \
|
|
"SSL3 Export Server Write IV");
|
|
key_block2 += IVSize;
|
|
}
|
|
|
|
PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
|
|
} else {
|
|
/*
|
|
** Generate TLS Export write keys and IVs.
|
|
*/
|
|
SECItem secret ;
|
|
SECItem keyblk ;
|
|
|
|
secret.type = siBuffer;
|
|
keyblk.type = siBuffer;
|
|
/*
|
|
** client_write_key[CipherSpec.key_material]
|
|
** final_client_write_key = PRF(client_write_key,
|
|
** "client write key",
|
|
** client_random + server_random);
|
|
*/
|
|
secret.data = &key_block[i];
|
|
secret.len = effKeySize;
|
|
i += effKeySize;
|
|
keyblk.data = key_block2;
|
|
keyblk.len = keySize;
|
|
status = TLS_PRF(&secret, "client write key", &crsr, &keyblk, isFIPS);
|
|
if (status != SECSuccess) {
|
|
goto key_and_mac_derive_fail;
|
|
}
|
|
buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
|
|
"TLS Export Client Write Key");
|
|
key_block2 += keySize;
|
|
|
|
/*
|
|
** server_write_key[CipherSpec.key_material]
|
|
** final_server_write_key = PRF(server_write_key,
|
|
** "server write key",
|
|
** client_random + server_random);
|
|
*/
|
|
secret.data = &key_block[i];
|
|
secret.len = effKeySize;
|
|
i += effKeySize;
|
|
keyblk.data = key_block2;
|
|
keyblk.len = keySize;
|
|
status = TLS_PRF(&secret, "server write key", &crsr, &keyblk, isFIPS);
|
|
if (status != SECSuccess) {
|
|
goto key_and_mac_derive_fail;
|
|
}
|
|
buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
|
|
"TLS Export Server Write Key");
|
|
key_block2 += keySize;
|
|
|
|
/*
|
|
** iv_block = PRF("", "IV block", client_random + server_random);
|
|
** client_write_IV[SecurityParameters.IV_size]
|
|
** server_write_IV[SecurityParameters.IV_size]
|
|
*/
|
|
if (IVSize) {
|
|
secret.data = NULL;
|
|
secret.len = 0;
|
|
keyblk.data = key_block2;
|
|
keyblk.len = 2 * IVSize;
|
|
status = TLS_PRF(&secret, "IV block", &crsr, &keyblk, isFIPS);
|
|
if (status != SECSuccess) {
|
|
goto key_and_mac_derive_fail;
|
|
}
|
|
buildSSLKey(key_block2, IVSize, \
|
|
&pwSpec->client.write_iv_item, \
|
|
"TLS Export Client Write IV");
|
|
buildSSLKey(key_block2 + IVSize, IVSize, \
|
|
&pwSpec->server.write_iv_item, \
|
|
"TLS Export Server Write IV");
|
|
key_block2 += 2 * IVSize;
|
|
}
|
|
PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
|
|
}
|
|
rv = SECSuccess;
|
|
|
|
key_and_mac_derive_fail:
|
|
|
|
MD5_DestroyContext(md5Ctx, PR_FALSE);
|
|
SHA1_DestroyContext(shaCtx, PR_FALSE);
|
|
|
|
if (rv != SECSuccess) {
|
|
PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
|
|
/* derive the Master Secret from the PMS */
|
|
/* Presently, this is only done wtih RSA PMS, and only on the server side,
|
|
* so isRSA is always true.
|
|
*/
|
|
SECStatus
|
|
ssl3_MasterSecretDeriveBypass(
|
|
ssl3CipherSpec * pwSpec,
|
|
const unsigned char * cr,
|
|
const unsigned char * sr,
|
|
const SECItem * pms,
|
|
PRBool isTLS,
|
|
PRBool isRSA)
|
|
{
|
|
unsigned char * key_block = pwSpec->key_block;
|
|
SECStatus rv = SECSuccess;
|
|
PRBool isFIPS = PR_FALSE;
|
|
PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
|
|
|
|
SECItem crsr;
|
|
|
|
unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
|
|
PRUint64 md5buf[22];
|
|
PRUint64 shabuf[40];
|
|
|
|
#define md5Ctx ((MD5Context *)md5buf)
|
|
#define shaCtx ((SHA1Context *)shabuf)
|
|
|
|
/* first do the consistancy checks */
|
|
if (isRSA) {
|
|
PORT_Assert(pms->len == SSL3_RSA_PMS_LENGTH);
|
|
if (pms->len != SSL3_RSA_PMS_LENGTH) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* caller must test PMS version for rollback */
|
|
}
|
|
|
|
/* initialize the client random, server random block */
|
|
crsr.type = siBuffer;
|
|
crsr.data = crsrdata;
|
|
crsr.len = sizeof crsrdata;
|
|
PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
|
|
PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
|
|
PRINT_BUF(100, (NULL, "Master Secret CRSR", crsr.data, crsr.len));
|
|
|
|
/* finally do the key gen */
|
|
if (isTLS) {
|
|
SECItem master = { siBuffer, NULL, 0 };
|
|
|
|
master.data = key_block;
|
|
master.len = SSL3_MASTER_SECRET_LENGTH;
|
|
|
|
if (isTLS12) {
|
|
rv = TLS_P_hash(HASH_AlgSHA256, pms, "master secret", &crsr,
|
|
&master, isFIPS);
|
|
} else {
|
|
rv = TLS_PRF(pms, "master secret", &crsr, &master, isFIPS);
|
|
}
|
|
if (rv != SECSuccess) {
|
|
PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
}
|
|
} else {
|
|
int i;
|
|
unsigned int made = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
unsigned int outLen;
|
|
unsigned char sha_out[SHA1_LENGTH];
|
|
|
|
SHA1_Begin(shaCtx);
|
|
SHA1_Update(shaCtx, (unsigned char*) mixers[i], i+1);
|
|
SHA1_Update(shaCtx, pms->data, pms->len);
|
|
SHA1_Update(shaCtx, crsr.data, crsr.len);
|
|
SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
|
|
PORT_Assert(outLen == SHA1_LENGTH);
|
|
|
|
MD5_Begin(md5Ctx);
|
|
MD5_Update(md5Ctx, pms->data, pms->len);
|
|
MD5_Update(md5Ctx, sha_out, outLen);
|
|
MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
|
|
PORT_Assert(outLen == MD5_LENGTH);
|
|
made += outLen;
|
|
}
|
|
}
|
|
|
|
/* store the results */
|
|
PORT_Memcpy(pwSpec->raw_master_secret, key_block,
|
|
SSL3_MASTER_SECRET_LENGTH);
|
|
pwSpec->msItem.data = pwSpec->raw_master_secret;
|
|
pwSpec->msItem.len = SSL3_MASTER_SECRET_LENGTH;
|
|
PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
|
|
pwSpec->msItem.len));
|
|
|
|
return rv;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl_canExtractMS(PK11SymKey *pms, PRBool isTLS, PRBool isDH, PRBool *pcbp)
|
|
{ SECStatus rv;
|
|
PK11SymKey * ms = NULL;
|
|
SECItem params = {siBuffer, NULL, 0};
|
|
CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params;
|
|
unsigned char rand[SSL3_RANDOM_LENGTH];
|
|
CK_VERSION pms_version;
|
|
CK_MECHANISM_TYPE master_derive;
|
|
CK_MECHANISM_TYPE key_derive;
|
|
CK_FLAGS keyFlags;
|
|
|
|
if (pms == NULL)
|
|
return(SECFailure);
|
|
|
|
PORT_Memset(rand, 0, SSL3_RANDOM_LENGTH);
|
|
|
|
if (isTLS) {
|
|
if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
|
|
else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
|
|
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
|
|
keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
} else {
|
|
if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
|
|
else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
|
|
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
|
|
keyFlags = 0;
|
|
}
|
|
|
|
master_params.pVersion = &pms_version;
|
|
master_params.RandomInfo.pClientRandom = rand;
|
|
master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
|
|
master_params.RandomInfo.pServerRandom = rand;
|
|
master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
|
|
|
|
params.data = (unsigned char *) &master_params;
|
|
params.len = sizeof master_params;
|
|
|
|
ms = PK11_DeriveWithFlags(pms, master_derive, ¶ms, key_derive,
|
|
CKA_DERIVE, 0, keyFlags);
|
|
if (ms == NULL)
|
|
return(SECFailure);
|
|
|
|
rv = PK11_ExtractKeyValue(ms);
|
|
*pcbp = (rv == SECSuccess);
|
|
PK11_FreeSymKey(ms);
|
|
|
|
return(rv);
|
|
|
|
}
|
|
#endif /* !NO_PKCS11_BYPASS */
|
|
|
|
/* Check the key exchange algorithm for each cipher in the list to see if
|
|
* a master secret key can be extracted. If the KEA will use keys from the
|
|
* specified cert make sure the extract operation is attempted from the slot
|
|
* where the private key resides.
|
|
* If MS can be extracted for all ciphers, (*pcanbypass) is set to TRUE and
|
|
* SECSuccess is returned. In all other cases but one (*pcanbypass) is
|
|
* set to FALSE and SECFailure is returned.
|
|
* In that last case Derive() has been called successfully but the MS is null,
|
|
* CanBypass sets (*pcanbypass) to FALSE and returns SECSuccess indicating the
|
|
* arguments were all valid but the slot cannot be bypassed.
|
|
*/
|
|
|
|
/* XXX Add SSL_CBP_TLS1_1 and test it in protocolmask when setting isTLS. */
|
|
|
|
SECStatus
|
|
SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
|
|
PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
|
|
PRBool *pcanbypass, void *pwArg)
|
|
{
|
|
#ifdef NO_PKCS11_BYPASS
|
|
if (!pcanbypass) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
*pcanbypass = PR_FALSE;
|
|
return SECSuccess;
|
|
#else
|
|
SECStatus rv;
|
|
int i;
|
|
PRUint16 suite;
|
|
PK11SymKey * pms = NULL;
|
|
SECKEYPublicKey * srvPubkey = NULL;
|
|
KeyType privKeytype;
|
|
PK11SlotInfo * slot = NULL;
|
|
SECItem param;
|
|
CK_VERSION version;
|
|
CK_MECHANISM_TYPE mechanism_array[2];
|
|
SECItem enc_pms = {siBuffer, NULL, 0};
|
|
PRBool isTLS = PR_FALSE;
|
|
SSLCipherSuiteInfo csdef;
|
|
PRBool testrsa = PR_FALSE;
|
|
PRBool testrsa_export = PR_FALSE;
|
|
PRBool testecdh = PR_FALSE;
|
|
PRBool testecdhe = PR_FALSE;
|
|
#ifndef NSS_DISABLE_ECC
|
|
SECKEYECParams ecParams = { siBuffer, NULL, 0 };
|
|
#endif
|
|
|
|
if (!cert || !srvPrivkey || !ciphersuites || !pcanbypass) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
srvPubkey = CERT_ExtractPublicKey(cert);
|
|
if (!srvPubkey)
|
|
return SECFailure;
|
|
|
|
*pcanbypass = PR_TRUE;
|
|
rv = SECFailure;
|
|
|
|
/* determine which KEAs to test */
|
|
/* 0 (TLS_NULL_WITH_NULL_NULL) is used as a list terminator because
|
|
* SSL3 and TLS specs forbid negotiating that cipher suite number.
|
|
*/
|
|
for (i=0; i < nsuites && (suite = *ciphersuites++) != 0; i++) {
|
|
/* skip SSL2 cipher suites and ones NSS doesn't support */
|
|
if (SSL_GetCipherSuiteInfo(suite, &csdef, sizeof(csdef)) != SECSuccess
|
|
|| SSL_IS_SSL2_CIPHER(suite) )
|
|
continue;
|
|
switch (csdef.keaType) {
|
|
case ssl_kea_rsa:
|
|
switch (csdef.cipherSuite) {
|
|
case TLS_RSA_EXPORT1024_WITH_RC4_56_SHA:
|
|
case TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA:
|
|
case TLS_RSA_EXPORT_WITH_RC4_40_MD5:
|
|
case TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
|
|
testrsa_export = PR_TRUE;
|
|
}
|
|
if (!testrsa_export)
|
|
testrsa = PR_TRUE;
|
|
break;
|
|
case ssl_kea_ecdh:
|
|
if (strcmp(csdef.keaTypeName, "ECDHE") == 0) /* ephemeral? */
|
|
testecdhe = PR_TRUE;
|
|
else
|
|
testecdh = PR_TRUE;
|
|
break;
|
|
case ssl_kea_dh:
|
|
/* this is actually DHE */
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* For each protocol try to derive and extract an MS.
|
|
* Failure of function any function except MS extract means
|
|
* continue with the next cipher test. Stop testing when the list is
|
|
* exhausted or when the first MS extract--not derive--fails.
|
|
*/
|
|
privKeytype = SECKEY_GetPrivateKeyType(srvPrivkey);
|
|
protocolmask &= SSL_CBP_SSL3|SSL_CBP_TLS1_0;
|
|
while (protocolmask) {
|
|
if (protocolmask & SSL_CBP_SSL3) {
|
|
isTLS = PR_FALSE;
|
|
protocolmask ^= SSL_CBP_SSL3;
|
|
} else {
|
|
isTLS = PR_TRUE;
|
|
protocolmask ^= SSL_CBP_TLS1_0;
|
|
}
|
|
|
|
if (privKeytype == rsaKey && testrsa_export) {
|
|
if (PK11_GetPrivateModulusLen(srvPrivkey) > EXPORT_RSA_KEY_LENGTH) {
|
|
*pcanbypass = PR_FALSE;
|
|
rv = SECSuccess;
|
|
break;
|
|
} else
|
|
testrsa = PR_TRUE;
|
|
}
|
|
for (; privKeytype == rsaKey && testrsa; ) {
|
|
/* TLS_RSA */
|
|
unsigned char rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
|
|
unsigned int outLen = 0;
|
|
CK_MECHANISM_TYPE target;
|
|
SECStatus irv;
|
|
|
|
mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
|
|
mechanism_array[1] = CKM_RSA_PKCS;
|
|
|
|
slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
|
|
if (slot == NULL) {
|
|
PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
|
|
break;
|
|
}
|
|
|
|
/* Generate the pre-master secret ... (client side) */
|
|
version.major = 3 /*MSB(clientHelloVersion)*/;
|
|
version.minor = 0 /*LSB(clientHelloVersion)*/;
|
|
param.data = (unsigned char *)&version;
|
|
param.len = sizeof version;
|
|
pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, ¶m, 0, pwArg);
|
|
PK11_FreeSlot(slot);
|
|
if (!pms)
|
|
break;
|
|
/* now wrap it */
|
|
enc_pms.len = SECKEY_PublicKeyStrength(srvPubkey);
|
|
enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
|
|
if (enc_pms.data == NULL) {
|
|
PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
|
|
break;
|
|
}
|
|
irv = PK11_PubWrapSymKey(CKM_RSA_PKCS, srvPubkey, pms, &enc_pms);
|
|
if (irv != SECSuccess)
|
|
break;
|
|
PK11_FreeSymKey(pms);
|
|
pms = NULL;
|
|
/* now do the server side--check the triple bypass first */
|
|
rv = PK11_PrivDecryptPKCS1(srvPrivkey, rsaPmsBuf, &outLen,
|
|
sizeof rsaPmsBuf,
|
|
(unsigned char *)enc_pms.data,
|
|
enc_pms.len);
|
|
/* if decrypt worked we're done with the RSA test */
|
|
if (rv == SECSuccess) {
|
|
*pcanbypass = PR_TRUE;
|
|
break;
|
|
}
|
|
/* check for fallback to double bypass */
|
|
target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE
|
|
: CKM_SSL3_MASTER_KEY_DERIVE;
|
|
pms = PK11_PubUnwrapSymKey(srvPrivkey, &enc_pms,
|
|
target, CKA_DERIVE, 0);
|
|
rv = ssl_canExtractMS(pms, isTLS, PR_FALSE, pcanbypass);
|
|
if (rv == SECSuccess && *pcanbypass == PR_FALSE)
|
|
goto done;
|
|
break;
|
|
}
|
|
|
|
/* Check for NULL to avoid double free.
|
|
* SECItem_FreeItem sets data NULL in secitem.c#265
|
|
*/
|
|
if (enc_pms.data != NULL) {
|
|
SECITEM_FreeItem(&enc_pms, PR_FALSE);
|
|
}
|
|
#ifndef NSS_DISABLE_ECC
|
|
for (; (privKeytype == ecKey && ( testecdh || testecdhe)) ||
|
|
(privKeytype == rsaKey && testecdhe); ) {
|
|
CK_MECHANISM_TYPE target;
|
|
SECKEYPublicKey *keapub = NULL;
|
|
SECKEYPrivateKey *keapriv;
|
|
SECKEYPublicKey *cpub = NULL; /* client's ephemeral ECDH keys */
|
|
SECKEYPrivateKey *cpriv = NULL;
|
|
SECKEYECParams *pecParams = NULL;
|
|
|
|
if (privKeytype == ecKey && testecdhe) {
|
|
/* TLS_ECDHE_ECDSA */
|
|
pecParams = &srvPubkey->u.ec.DEREncodedParams;
|
|
} else if (privKeytype == rsaKey && testecdhe) {
|
|
/* TLS_ECDHE_RSA */
|
|
ECName ec_curve;
|
|
int serverKeyStrengthInBits;
|
|
int signatureKeyStrength;
|
|
int requiredECCbits;
|
|
|
|
/* find a curve of equivalent strength to the RSA key's */
|
|
requiredECCbits = PK11_GetPrivateModulusLen(srvPrivkey);
|
|
if (requiredECCbits < 0)
|
|
break;
|
|
requiredECCbits *= BPB;
|
|
serverKeyStrengthInBits = srvPubkey->u.rsa.modulus.len;
|
|
if (srvPubkey->u.rsa.modulus.data[0] == 0) {
|
|
serverKeyStrengthInBits--;
|
|
}
|
|
/* convert to strength in bits */
|
|
serverKeyStrengthInBits *= BPB;
|
|
|
|
signatureKeyStrength =
|
|
SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits);
|
|
|
|
if ( requiredECCbits > signatureKeyStrength )
|
|
requiredECCbits = signatureKeyStrength;
|
|
|
|
ec_curve =
|
|
ssl3_GetCurveWithECKeyStrength(
|
|
ssl3_GetSupportedECCurveMask(NULL),
|
|
requiredECCbits);
|
|
rv = ssl3_ECName2Params(NULL, ec_curve, &ecParams);
|
|
if (rv == SECFailure) {
|
|
break;
|
|
}
|
|
pecParams = &ecParams;
|
|
}
|
|
|
|
if (testecdhe) {
|
|
/* generate server's ephemeral keys */
|
|
keapriv = SECKEY_CreateECPrivateKey(pecParams, &keapub, NULL);
|
|
if (!keapriv || !keapub) {
|
|
if (keapriv)
|
|
SECKEY_DestroyPrivateKey(keapriv);
|
|
if (keapub)
|
|
SECKEY_DestroyPublicKey(keapub);
|
|
PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
|
|
rv = SECFailure;
|
|
break;
|
|
}
|
|
} else {
|
|
/* TLS_ECDH_ECDSA */
|
|
keapub = srvPubkey;
|
|
keapriv = srvPrivkey;
|
|
pecParams = &srvPubkey->u.ec.DEREncodedParams;
|
|
}
|
|
|
|
/* perform client side ops */
|
|
/* generate a pair of ephemeral keys using server's parms */
|
|
cpriv = SECKEY_CreateECPrivateKey(pecParams, &cpub, NULL);
|
|
if (!cpriv || !cpub) {
|
|
if (testecdhe) {
|
|
SECKEY_DestroyPrivateKey(keapriv);
|
|
SECKEY_DestroyPublicKey(keapub);
|
|
}
|
|
PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
|
|
rv = SECFailure;
|
|
break;
|
|
}
|
|
/* now do the server side */
|
|
/* determine the PMS using client's public value */
|
|
target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE_DH
|
|
: CKM_SSL3_MASTER_KEY_DERIVE_DH;
|
|
pms = PK11_PubDeriveWithKDF(keapriv, cpub, PR_FALSE, NULL, NULL,
|
|
CKM_ECDH1_DERIVE,
|
|
target,
|
|
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
|
|
rv = ssl_canExtractMS(pms, isTLS, PR_TRUE, pcanbypass);
|
|
SECKEY_DestroyPrivateKey(cpriv);
|
|
SECKEY_DestroyPublicKey(cpub);
|
|
if (testecdhe) {
|
|
SECKEY_DestroyPrivateKey(keapriv);
|
|
SECKEY_DestroyPublicKey(keapub);
|
|
}
|
|
if (rv == SECSuccess && *pcanbypass == PR_FALSE)
|
|
goto done;
|
|
break;
|
|
}
|
|
/* Check for NULL to avoid double free. */
|
|
if (ecParams.data != NULL) {
|
|
PORT_Free(ecParams.data);
|
|
ecParams.data = NULL;
|
|
}
|
|
#endif /* NSS_DISABLE_ECC */
|
|
if (pms)
|
|
PK11_FreeSymKey(pms);
|
|
}
|
|
|
|
/* *pcanbypass has been set */
|
|
rv = SECSuccess;
|
|
|
|
done:
|
|
if (pms)
|
|
PK11_FreeSymKey(pms);
|
|
|
|
/* Check for NULL to avoid double free.
|
|
* SECItem_FreeItem sets data NULL in secitem.c#265
|
|
*/
|
|
if (enc_pms.data != NULL) {
|
|
SECITEM_FreeItem(&enc_pms, PR_FALSE);
|
|
}
|
|
#ifndef NSS_DISABLE_ECC
|
|
if (ecParams.data != NULL) {
|
|
PORT_Free(ecParams.data);
|
|
ecParams.data = NULL;
|
|
}
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
if (srvPubkey) {
|
|
SECKEY_DestroyPublicKey(srvPubkey);
|
|
srvPubkey = NULL;
|
|
}
|
|
|
|
|
|
return rv;
|
|
#endif /* NO_PKCS11_BYPASS */
|
|
}
|
|
|