mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-16 20:40:11 +01:00
347 lines
10 KiB
C
347 lines
10 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library for binary polynomial field curves.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "ec2.h"
|
|
#include "mplogic.h"
|
|
#include "mp_gf2m.h"
|
|
#include <stdlib.h>
|
|
|
|
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py)
|
|
{
|
|
|
|
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
|
|
return MP_YES;
|
|
} else {
|
|
return MP_NO;
|
|
}
|
|
|
|
}
|
|
|
|
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py)
|
|
{
|
|
mp_zero(px);
|
|
mp_zero(py);
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P,
|
|
* Q, and R can all be identical. Uses affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
|
|
const mp_int *qy, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int lambda, tempx, tempy;
|
|
|
|
MP_DIGITS(&lambda) = 0;
|
|
MP_DIGITS(&tempx) = 0;
|
|
MP_DIGITS(&tempy) = 0;
|
|
MP_CHECKOK(mp_init(&lambda));
|
|
MP_CHECKOK(mp_init(&tempx));
|
|
MP_CHECKOK(mp_init(&tempy));
|
|
/* if P = inf, then R = Q */
|
|
if (ec_GF2m_pt_is_inf_aff(px, py) == 0) {
|
|
MP_CHECKOK(mp_copy(qx, rx));
|
|
MP_CHECKOK(mp_copy(qy, ry));
|
|
res = MP_OKAY;
|
|
goto CLEANUP;
|
|
}
|
|
/* if Q = inf, then R = P */
|
|
if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
|
|
MP_CHECKOK(mp_copy(px, rx));
|
|
MP_CHECKOK(mp_copy(py, ry));
|
|
res = MP_OKAY;
|
|
goto CLEANUP;
|
|
}
|
|
/* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
|
|
* + lambda + px + qx */
|
|
if (mp_cmp(px, qx) != 0) {
|
|
MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_div(&tempy, &tempx, &lambda, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, &lambda, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, &group->curvea, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, px, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, qx, &tempx, group->meth));
|
|
} else {
|
|
/* if py != qy or qx = 0, then R = inf */
|
|
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
|
|
mp_zero(rx);
|
|
mp_zero(ry);
|
|
res = MP_OKAY;
|
|
goto CLEANUP;
|
|
}
|
|
/* lambda = qx + qy / qx */
|
|
MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&lambda, qx, &lambda, group->meth));
|
|
/* tempx = a + lambda^2 + lambda */
|
|
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, &lambda, &tempx, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempx, &group->curvea, &tempx, group->meth));
|
|
}
|
|
/* ry = (qx + tempx) * lambda + tempx + qy */
|
|
MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_mul(&tempy, &lambda, &tempy, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_add(&tempy, &tempx, &tempy, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth));
|
|
/* rx = tempx */
|
|
MP_CHECKOK(mp_copy(&tempx, rx));
|
|
|
|
CLEANUP:
|
|
mp_clear(&lambda);
|
|
mp_clear(&tempx);
|
|
mp_clear(&tempy);
|
|
return res;
|
|
}
|
|
|
|
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
|
|
* identical. Uses affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
|
|
const mp_int *qy, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int nqy;
|
|
|
|
MP_DIGITS(&nqy) = 0;
|
|
MP_CHECKOK(mp_init(&nqy));
|
|
/* nqy = qx+qy */
|
|
MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth));
|
|
MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group));
|
|
CLEANUP:
|
|
mp_clear(&nqy);
|
|
return res;
|
|
}
|
|
|
|
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
|
|
* affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
|
|
mp_int *ry, const ECGroup *group)
|
|
{
|
|
return group->point_add(px, py, px, py, rx, ry, group);
|
|
}
|
|
|
|
/* by default, this routine is unused and thus doesn't need to be compiled */
|
|
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
|
|
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
|
|
* R can be identical. Uses affine coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
|
|
mp_int *rx, mp_int *ry, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int k, k3, qx, qy, sx, sy;
|
|
int b1, b3, i, l;
|
|
|
|
MP_DIGITS(&k) = 0;
|
|
MP_DIGITS(&k3) = 0;
|
|
MP_DIGITS(&qx) = 0;
|
|
MP_DIGITS(&qy) = 0;
|
|
MP_DIGITS(&sx) = 0;
|
|
MP_DIGITS(&sy) = 0;
|
|
MP_CHECKOK(mp_init(&k));
|
|
MP_CHECKOK(mp_init(&k3));
|
|
MP_CHECKOK(mp_init(&qx));
|
|
MP_CHECKOK(mp_init(&qy));
|
|
MP_CHECKOK(mp_init(&sx));
|
|
MP_CHECKOK(mp_init(&sy));
|
|
|
|
/* if n = 0 then r = inf */
|
|
if (mp_cmp_z(n) == 0) {
|
|
mp_zero(rx);
|
|
mp_zero(ry);
|
|
res = MP_OKAY;
|
|
goto CLEANUP;
|
|
}
|
|
/* Q = P, k = n */
|
|
MP_CHECKOK(mp_copy(px, &qx));
|
|
MP_CHECKOK(mp_copy(py, &qy));
|
|
MP_CHECKOK(mp_copy(n, &k));
|
|
/* if n < 0 then Q = -Q, k = -k */
|
|
if (mp_cmp_z(n) < 0) {
|
|
MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth));
|
|
MP_CHECKOK(mp_neg(&k, &k));
|
|
}
|
|
#ifdef ECL_DEBUG /* basic double and add method */
|
|
l = mpl_significant_bits(&k) - 1;
|
|
MP_CHECKOK(mp_copy(&qx, &sx));
|
|
MP_CHECKOK(mp_copy(&qy, &sy));
|
|
for (i = l - 1; i >= 0; i--) {
|
|
/* S = 2S */
|
|
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
|
|
/* if k_i = 1, then S = S + Q */
|
|
if (mpl_get_bit(&k, i) != 0) {
|
|
MP_CHECKOK(group->
|
|
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
|
}
|
|
}
|
|
#else /* double and add/subtract method from
|
|
* standard */
|
|
/* k3 = 3 * k */
|
|
MP_CHECKOK(mp_set_int(&k3, 3));
|
|
MP_CHECKOK(mp_mul(&k, &k3, &k3));
|
|
/* S = Q */
|
|
MP_CHECKOK(mp_copy(&qx, &sx));
|
|
MP_CHECKOK(mp_copy(&qy, &sy));
|
|
/* l = index of high order bit in binary representation of 3*k */
|
|
l = mpl_significant_bits(&k3) - 1;
|
|
/* for i = l-1 downto 1 */
|
|
for (i = l - 1; i >= 1; i--) {
|
|
/* S = 2S */
|
|
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
|
|
b3 = MP_GET_BIT(&k3, i);
|
|
b1 = MP_GET_BIT(&k, i);
|
|
/* if k3_i = 1 and k_i = 0, then S = S + Q */
|
|
if ((b3 == 1) && (b1 == 0)) {
|
|
MP_CHECKOK(group->
|
|
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
|
/* if k3_i = 0 and k_i = 1, then S = S - Q */
|
|
} else if ((b3 == 0) && (b1 == 1)) {
|
|
MP_CHECKOK(group->
|
|
point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
|
}
|
|
}
|
|
#endif
|
|
/* output S */
|
|
MP_CHECKOK(mp_copy(&sx, rx));
|
|
MP_CHECKOK(mp_copy(&sy, ry));
|
|
|
|
CLEANUP:
|
|
mp_clear(&k);
|
|
mp_clear(&k3);
|
|
mp_clear(&qx);
|
|
mp_clear(&qy);
|
|
mp_clear(&sx);
|
|
mp_clear(&sy);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/* Validates a point on a GF2m curve. */
|
|
mp_err
|
|
ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_NO;
|
|
mp_int accl, accr, tmp, pxt, pyt;
|
|
|
|
MP_DIGITS(&accl) = 0;
|
|
MP_DIGITS(&accr) = 0;
|
|
MP_DIGITS(&tmp) = 0;
|
|
MP_DIGITS(&pxt) = 0;
|
|
MP_DIGITS(&pyt) = 0;
|
|
MP_CHECKOK(mp_init(&accl));
|
|
MP_CHECKOK(mp_init(&accr));
|
|
MP_CHECKOK(mp_init(&tmp));
|
|
MP_CHECKOK(mp_init(&pxt));
|
|
MP_CHECKOK(mp_init(&pyt));
|
|
|
|
/* 1: Verify that publicValue is not the point at infinity */
|
|
if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) {
|
|
res = MP_NO;
|
|
goto CLEANUP;
|
|
}
|
|
/* 2: Verify that the coordinates of publicValue are elements
|
|
* of the field.
|
|
*/
|
|
if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
|
|
(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
|
|
res = MP_NO;
|
|
goto CLEANUP;
|
|
}
|
|
/* 3: Verify that publicValue is on the curve. */
|
|
if (group->meth->field_enc) {
|
|
group->meth->field_enc(px, &pxt, group->meth);
|
|
group->meth->field_enc(py, &pyt, group->meth);
|
|
} else {
|
|
mp_copy(px, &pxt);
|
|
mp_copy(py, &pyt);
|
|
}
|
|
/* left-hand side: y^2 + x*y */
|
|
MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
|
|
MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) );
|
|
MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) );
|
|
/* right-hand side: x^3 + a*x^2 + b */
|
|
MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
|
|
MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
|
|
MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) );
|
|
MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
|
|
MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
|
|
/* check LHS - RHS == 0 */
|
|
MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) );
|
|
if (mp_cmp_z(&accr) != 0) {
|
|
res = MP_NO;
|
|
goto CLEANUP;
|
|
}
|
|
/* 4: Verify that the order of the curve times the publicValue
|
|
* is the point at infinity.
|
|
*/
|
|
MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
|
|
if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
|
|
res = MP_NO;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
res = MP_YES;
|
|
|
|
CLEANUP:
|
|
mp_clear(&accl);
|
|
mp_clear(&accr);
|
|
mp_clear(&tmp);
|
|
mp_clear(&pxt);
|
|
mp_clear(&pyt);
|
|
return res;
|
|
}
|