mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-16 20:40:11 +01:00
275 lines
8.5 KiB
C
275 lines
8.5 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library for binary polynomial field curves.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
|
|
* Stephen Fung <fungstep@hotmail.com>, and
|
|
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "ec2.h"
|
|
#include "mplogic.h"
|
|
#include "mp_gf2m.h"
|
|
#include <stdlib.h>
|
|
|
|
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
|
|
* projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
|
|
* and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m)
|
|
* without precomputation". modified to not require precomputation of
|
|
* c=b^{2^{m-1}}. */
|
|
static mp_err
|
|
gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int t1;
|
|
|
|
MP_DIGITS(&t1) = 0;
|
|
MP_CHECKOK(mp_init(&t1));
|
|
|
|
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_mul(&group->curveb, &t1, &t1, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
|
|
|
|
CLEANUP:
|
|
mp_clear(&t1);
|
|
return res;
|
|
}
|
|
|
|
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
|
|
* Montgomery projective coordinates. Uses algorithm Madd in appendix of
|
|
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation". */
|
|
static mp_err
|
|
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
|
|
const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int t1, t2;
|
|
|
|
MP_DIGITS(&t1) = 0;
|
|
MP_DIGITS(&t2) = 0;
|
|
MP_CHECKOK(mp_init(&t1));
|
|
MP_CHECKOK(mp_init(&t2));
|
|
|
|
MP_CHECKOK(mp_copy(x, &t1));
|
|
MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
|
|
|
|
CLEANUP:
|
|
mp_clear(&t1);
|
|
mp_clear(&t2);
|
|
return res;
|
|
}
|
|
|
|
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
|
|
* using Montgomery point multiplication algorithm Mxy() in appendix of
|
|
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation". Returns: 0 on error 1 if return value
|
|
* should be the point at infinity 2 otherwise */
|
|
static int
|
|
gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
|
|
mp_int *x2, mp_int *z2, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
int ret = 0;
|
|
mp_int t3, t4, t5;
|
|
|
|
MP_DIGITS(&t3) = 0;
|
|
MP_DIGITS(&t4) = 0;
|
|
MP_DIGITS(&t5) = 0;
|
|
MP_CHECKOK(mp_init(&t3));
|
|
MP_CHECKOK(mp_init(&t4));
|
|
MP_CHECKOK(mp_init(&t5));
|
|
|
|
if (mp_cmp_z(z1) == 0) {
|
|
mp_zero(x2);
|
|
mp_zero(z2);
|
|
ret = 1;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
if (mp_cmp_z(z2) == 0) {
|
|
MP_CHECKOK(mp_copy(x, x2));
|
|
MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
|
|
ret = 2;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
MP_CHECKOK(mp_set_int(&t5, 1));
|
|
if (group->meth->field_enc) {
|
|
MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
|
|
}
|
|
|
|
MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
|
|
|
|
MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
|
|
|
|
MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
|
|
|
|
MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
|
|
MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
|
|
|
|
MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
|
|
|
|
ret = 2;
|
|
|
|
CLEANUP:
|
|
mp_clear(&t3);
|
|
mp_clear(&t4);
|
|
mp_clear(&t5);
|
|
if (res == MP_OKAY) {
|
|
return ret;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast
|
|
* multiplication on elliptic curves over GF(2^m) without
|
|
* precomputation". Elliptic curve points P and R can be identical. Uses
|
|
* Montgomery projective coordinates. */
|
|
mp_err
|
|
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
|
|
mp_int *rx, mp_int *ry, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int x1, x2, z1, z2;
|
|
int i, j;
|
|
mp_digit top_bit, mask;
|
|
|
|
MP_DIGITS(&x1) = 0;
|
|
MP_DIGITS(&x2) = 0;
|
|
MP_DIGITS(&z1) = 0;
|
|
MP_DIGITS(&z2) = 0;
|
|
MP_CHECKOK(mp_init(&x1));
|
|
MP_CHECKOK(mp_init(&x2));
|
|
MP_CHECKOK(mp_init(&z1));
|
|
MP_CHECKOK(mp_init(&z2));
|
|
|
|
/* if result should be point at infinity */
|
|
if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
|
|
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
|
|
goto CLEANUP;
|
|
}
|
|
|
|
MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */
|
|
MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
|
|
MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 =
|
|
* x1^2 =
|
|
* px^2 */
|
|
MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2
|
|
* =
|
|
* px^4
|
|
* +
|
|
* b
|
|
*/
|
|
|
|
/* find top-most bit and go one past it */
|
|
i = MP_USED(n) - 1;
|
|
j = MP_DIGIT_BIT - 1;
|
|
top_bit = 1;
|
|
top_bit <<= MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
while (!(MP_DIGITS(n)[i] & mask)) {
|
|
mask >>= 1;
|
|
j--;
|
|
}
|
|
mask >>= 1;
|
|
j--;
|
|
|
|
/* if top most bit was at word break, go to next word */
|
|
if (!mask) {
|
|
i--;
|
|
j = MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
for (; j >= 0; j--) {
|
|
if (MP_DIGITS(n)[i] & mask) {
|
|
MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group));
|
|
MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group));
|
|
} else {
|
|
MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group));
|
|
MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group));
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
j = MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
}
|
|
|
|
/* convert out of "projective" coordinates */
|
|
i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
|
|
if (i == 0) {
|
|
res = MP_BADARG;
|
|
goto CLEANUP;
|
|
} else if (i == 1) {
|
|
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
|
|
} else {
|
|
MP_CHECKOK(mp_copy(&x2, rx));
|
|
MP_CHECKOK(mp_copy(&z2, ry));
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_clear(&x1);
|
|
mp_clear(&x2);
|
|
mp_clear(&z1);
|
|
mp_clear(&z2);
|
|
return res;
|
|
}
|