mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-16 20:40:11 +01:00
141 lines
6.0 KiB
C
141 lines
6.0 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library for prime field curves.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifndef __ecp_h_
|
|
#define __ecp_h_
|
|
|
|
#include "ecl-priv.h"
|
|
|
|
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
|
|
|
|
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
|
|
|
|
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
|
|
* qy). Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
|
|
const mp_int *qx, const mp_int *qy, mp_int *rx,
|
|
mp_int *ry, const ECGroup *group);
|
|
|
|
/* Computes R = P - Q. Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
|
|
const mp_int *qx, const mp_int *qy, mp_int *rx,
|
|
mp_int *ry, const ECGroup *group);
|
|
|
|
/* Computes R = 2P. Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
|
|
mp_int *ry, const ECGroup *group);
|
|
|
|
/* Validates a point on a GFp curve. */
|
|
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
|
|
|
|
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
|
|
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
|
|
* a, b and p are the elliptic curve coefficients and the prime that
|
|
* determines the field GFp. Uses affine coordinates. */
|
|
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
|
|
const mp_int *py, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group);
|
|
#endif
|
|
|
|
/* Converts a point P(px, py) from affine coordinates to Jacobian
|
|
* projective coordinates R(rx, ry, rz). */
|
|
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
|
|
mp_int *ry, mp_int *rz, const ECGroup *group);
|
|
|
|
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
|
|
* affine coordinates R(rx, ry). */
|
|
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
|
|
const mp_int *pz, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group);
|
|
|
|
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
|
|
* coordinates. */
|
|
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
|
|
const mp_int *pz);
|
|
|
|
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
|
|
* coordinates. */
|
|
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
|
|
|
|
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
|
|
* (qx, qy, qz). Uses Jacobian coordinates. */
|
|
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
|
|
const mp_int *pz, const mp_int *qx,
|
|
const mp_int *qy, mp_int *rx, mp_int *ry,
|
|
mp_int *rz, const ECGroup *group);
|
|
|
|
/* Computes R = 2P. Uses Jacobian coordinates. */
|
|
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
|
|
const mp_int *pz, mp_int *rx, mp_int *ry,
|
|
mp_int *rz, const ECGroup *group);
|
|
|
|
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
|
|
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
|
|
* a, b and p are the elliptic curve coefficients and the prime that
|
|
* determines the field GFp. Uses Jacobian coordinates. */
|
|
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
|
|
const mp_int *py, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group);
|
|
#endif
|
|
|
|
/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
|
|
* (base point) of the group of points on the elliptic curve. Allows k1 =
|
|
* NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
|
|
* coordinates. Input and output values are assumed to be NOT
|
|
* field-encoded and are in affine form. */
|
|
mp_err
|
|
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
|
|
const mp_int *py, mp_int *rx, mp_int *ry,
|
|
const ECGroup *group);
|
|
|
|
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
|
|
* curve points P and R can be identical. Uses mixed Modified-Jacobian
|
|
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
|
|
* additions. Assumes input is already field-encoded using field_enc, and
|
|
* returns output that is still field-encoded. Uses 5-bit window NAF
|
|
* method (algorithm 11) for scalar-point multiplication from Brown,
|
|
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
|
|
* Curves Over Prime Fields. */
|
|
mp_err
|
|
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
|
|
mp_int *rx, mp_int *ry, const ECGroup *group);
|
|
|
|
#endif /* __ecp_h_ */
|